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Abstract

We are interested in complex interpolation problems that have their origins in

the work of Nevanlinna and Pick. In the 90 years since their results first appeared,

Nevanlinna-Pick problems have been valuable in the development of areas of pure

mathematics such as operator theory, operator algebras, harmonic analysis and

complex function theory. The study of interpolation problems has also been closely

tied to the development of systems theory and H-infinity control theory.

We describe how these interpolation results extend to a class of subalgebras of

the algebra of bounded analytic functions on the open unit disk. The problems

we will look at include as special cases interpolation theory on multiply connected

domains and interpolation on embedded disks.

Our methods use duality techniques, factorization results, averaging techniques

and matrix theory.
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Chapter 1

Nevanlinna-Pick Interpolation

1.1 The Nevanlinna-Pick problem

The term Nevanlinna-Pick interpolation describes a class of complex interpolation

problems. The problem was originally studied by Pick in 1916 [35] and indepen-

dently by Nevanlinna in 1919 [31]. Since there are a number of Nevanlinna-Pick

interpolation problems in the literature, and since we will be concerned with more

than one such type of problem, we will refer to the original theorem as the classical

Nevanlinna-Pick theorem.

The statement of the classical problem (the one studied by Nevanlinna and

Pick) is as follows. Given n points z1, . . . , zn in the open unit disk D, and n points

w1, . . . , wn in the disk D characterize, in terms of the data z1, . . . , zn, w1, . . . , wn,

the existence of a holomorphic map f : D ! D such that f(zj) = wj.
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1.1 THE NEVANLINNA-PICK PROBLEM

Pick’s characterization was that such a function exists if and only if the matrix



1� wiwj

1� zizj

�n

i,j=1

(1.1)

is positive (semi-definite).

Pick’s original proof relied on the Schwarz lemma and an inductive argument

to obtain the result. Pick also established the fact that the solution to interpolat-

ing function is unique if and only if the Pick matrix (1.1) is singular. Nevanlinna

worked independently on the same problem. He used Schur’s algorithm to charac-

terize the existence of a solution to the problem and also parametrized all solutions

in the case where the Pick matrix is invertible.

In order to apply operator theoretic techniques to this problem, a reformulation

is required. The set of bounded analytic functions on the disk will be denoted H1.

The norm on H1 is the usual supremum norm

kfk1 := sup{|f(z)| : z 2 D}. (1.2)

When endowed with this norm, H1 is a Banach algebra and the maximum modulus

principle [7, page 134, Theorem 12] shows that a function f maps the open unit

disk D to itself if and only if f is in the closed unit ball of H1. Therefore, the

Nevanlinna-Pick theorem characterizes the existence of an element f in H1 such

that kfk1  1 and f(zj) = wj.

In Chapter 1.2 and Chapter 1.3 we will describe in more detail the way in

which operator theory and the Nevanlinna-Pick problem are related. To begin

with we will describe our motivation and make some general statements about the

2



1.1 THE NEVANLINNA-PICK PROBLEM

problems we plan to look at.

We would like to generalize the classical Nevanlinna-Pick result to subalgebras

of H1. It is too much to hope that such a generalization is possible for all sub-

algebras, and as we will see later on, even the simplest examples can be more

complicated than one might expect.

Consider the interpolation problem for an algebra A ✓ H1. The interpolation

problem is really a question about the norm on an n-dimensional quotient of A.

We will assume that A is weak⇤ closed and unital. Let z1, . . . , zn be n points in

the unit disk D and let w1, . . . , wn be n complex scalars.

We will say that g 2 A interpolates or is an interpolating function if g(zj) = wj.

A solution to the interpolation problem is a function f 2 A such that kfk1  1,

f(zj) = wj. Therefore, a solution is an interpolating function in the closed unit

ball of A. In general, there is no reason for an interpolating function to exist.

Let I denote the ideal of functions that vanish at the n points z1, . . . , zn. The

norm on the quotient A/I is given by

kf + Ik := inf{kf + hk1 : h 2 I} (1.3)

Suppose that an interpolating function f 2 A does exist. If g 2 A and g(zj) = wj,

then f�g vanishes at the n points z1, . . . , zn and so f�g 2 I. In fact every function

in the coset f+I interpolates zj to wj for j = 1, . . . , n. If the interpolation problem

has a solution, say g = f + h with h 2 I, then kf + Ik  kf + hk1  1. On

the other hand if kf + Ik  1 for some function f , f(zj) = wj, then Lemma 3.2.1

shows that a solution to the interpolation problem does exist. Hence, determining

3



1.1 THE NEVANLINNA-PICK PROBLEM

the existence of an interpolating function involves computing the norm of f +I in

the quotient algebra A/I.

Let H be a reproducing kernel Hilbert space on X with kernel function K. The

kernel function for H at the point x 2 X is denoted kx. The kernel function kx is

the unique element in H such that

f(x) = hf, kxi , (1.4)

for all f 2 H. The multiplier algebra mult(H) is defined as the set of functions

f : X ! C such that fh 2 H for all h 2 H. An application of the closed graph

theorem shows that the map Mf : H ! H defined by Mf (h) = fh is a bounded

operator on H. The multiplier norm of f is defined by kfkmult := kMfk. This

representation of mult(H) on B(H) induces a natural operator algebra norm on

the multiplier algebra, i.e., there is a natural family of matrix norms on the p⇥ p

matrices over A := mult(H) given by

k[fi,j]kM
p

(mult(H)) :=
�

�

�

⇥

Mf
i,j

⇤

M
p

�

�

�

B(H(p))
. (1.5)

The matrix norm structure of an operator algebra carries has tremendous conse-

quences in operator algebras and in the Nevanlinna-Pick theorem. All the examples

we deal with will be subalgebras of H1 that act as multipliers on subspaces of H2.

In this case the multiplier norm, and the corresponding matrix norms, are just the

usual supremum norm, i.e.,

k[fi,j]kM
p

(mult(H)) = sup{k[fi,j(z)]k : z 2 D}. (1.6)
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1.1 THE NEVANLINNA-PICK PROBLEM

Given a point x 2 X, M⇤
f kx = f(x)kx. This shows that f is a bounded function

with kfk1  kfkmult, and that kx is an eigenvector for M⇤
f .

Given n points x1, . . . , xn 2 X let K be the subspace spanned by kx1 , . . . , kx
n

.

The orthogonal complement of K in H is the set of functions in H that van-

ish at the points x1, . . . , xn and we define N := H  K. Although K may not

be n-dimensional, we can always reorder the kernel functions so that the set

{kx1 , . . . , kx
m

} is a basis for K, with m  n.

Let ⇡K : A! B(K) be given by ⇡K(f) = PKMfPK, where PK is the orthogonal

projection onto K. Since the subspace K is invariant for A⇤ the map ⇡K is a

homomorphism. The kernel of this homomorphism is the set of functions f 2 A
such that M⇤

f kx
j

= f(xj)kx
j

= 0 for j = 1, . . . , n. If the kernel functions kx
j

are

non-zero, then f(xj) = 0 and we see that the kernel of this homomorphism is

I. Therefore, we have a contractive, unital representation of A/I on B(K). We

denote this representation by ⇡K as well.

Note that kPKMfPKk  C if and only if C2I � (PKMfPK)(PKMfPK)⇤ � 0,

equivalently C2PK � PKMfM
⇤
f PK � 0. An element k 2 K has the form k =

Pn
j=1 ↵jkx

j

, where ↵1, . . . ,↵n 2 C. Using the fact that M⇤
f kx

j

= f(xj)kx
j

, we see

that

C2 kkk2 � ⌦MfM
⇤
f k, k

↵

=
n
X

i,j=1

↵i↵j(C
2 � f(xi)f(xj))K(xi, xj) (1.7)

=

*

h

(C2 � f(xi)f(xj))K(xi, xj)
i

2

6

6

6

6

4

↵1

...

↵n

3

7

7

7

7

5

,

2

6

6

6

6

4

↵1

...

↵n

3

7

7

7

7

5

+

. (1.8)
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1.2 SARASON’S GENERALIZED INTERPOLATION

Hence, k⇡K(f)k  1 if and only if the matrix
h

(1� f(xi)f(xj))K(xi, xj)
in

i,j=1
� 0.

If ⇡K is an isometry, then this last condition is equivalent to kf + Ik  1 and the

interpolation problem is solved.

As an example, consider the Hardy space H2 of analytic functions on the disk

with square summable power series. This is a reproducing kernel Hilbert space.

The kernel function is the Szegö kernel K given by

K(z, w) =
1

1� zw
. (1.9)

The multiplier algebra of H2 is H1 and kfk1 = kfkmult. In this case the rep-

resentation ⇡K is an isometry (in fact, a complete isometry) and so the existence

of a solution to the Nevanlinna-Pick problem is equivalent to the positivity of the

matrix
h

(1� f(zi)f(zj))K(zi, zj)
in

i,j=1
=



1� wiwj

1� zizj

�n

i,j=1

. (1.10)

As it stands this reasoning is incomplete. We only know that the represen-

tation on K is an isometry because of the Nevanlinna-Pick theorem. However,

an independent proof of the isometry would yield the Nevanlinna-Pick theorem.

Sarason [37] provided such a proof.

1.2 Sarason’s generalized interpolation

The connection between the Nevanlinna-Pick problem and operator theory ap-

peared first in Sarason’s seminal paper [37]. It was Sarason who reformulated the

problem as a question about the distance of f 2 H1 from a weak⇤-closed ideal I.

6



1.2 SARASON’S GENERALIZED INTERPOLATION

Duality techniques then give a new proof of the Nevanlinna-Pick theorem. Sara-

son actually proved a special case of the commutant lifting theorem which in turn

implies the interpolation result.

A function � 2 L2 is called unimodular if and only if |�| = 1 a.e. on the circle.

Equivalently, the set {�zj : j 2 Z} is an orthonormal basis of L2. A unimodular

function � 2 H2 is called inner. A function � is inner if and only if the set

{�zj : j � 0} is an orthonormal basis of H2.

We have noted that H1 is the multiplier algebra of H2. The weak⇤-closed

(WOT-closed) subalgebra of B(H2) generated by the shift S is H1. Furthermore,

H1 is equal to its own commutant and {S}0 = H1.

If A is an operator algebra on H, then a subspace M of the Hilbert space

H is called invariant if A(M) ✓ M for all A 2 A. A subspace M is called

semi-invariant for A if there exists M1,M2 such that M1,M2 are invariant for

A and M = M1  M2. The key fact, as pointed out in [37], is that M is semi-

invariant for A if and only if the compression of A to M is a homomorphism of A.

The subspace K of H2 spanned by kz1 , . . . , kz
n

is an example of a semi-invariant

subspace of H2 for A = H1.

When studying representations of operator algebras on Hilbert space, it is of

value to classify the invariant subspaces for the algebra. Beurling’s theorem [14]

classifies the invariant subspaces of the shift, or equivalently the invariant subspaces

of H1. The Helson-Lowdenslager-Srinivasan theorem [23, 39] is an extension of

Beurling’s theorem and classifies the invariant subspaces for the shift operator on

Lp.

Theorem 1.2.1 (Beurling [14]). Let M be a closed, non-trivial, subspace of H2.

7



1.2 SARASON’S GENERALIZED INTERPOLATION

The subspace M is invariant for S if and only if there exists an inner function �

such that M = �H2.

Theorem 1.2.2 (Helson-Lowdenslager-Srinivasan [21]). Let M be a closed (weak⇤-

closed if p = 1), non-trivial, subspace of Lp. The subspace M is invariant for S

if and only if one of the following two conditions is true

1. There exists a unimodular function � such that M = �Hp.

2. There exists a Lebesgue measurable set E ✓ T, of positive measure, such that

M = �ELp.

A subspace of the form �Hp is called a Beurling subspace, a subspace of the

form �ELp is called a Wiener subspace.

If I is a weak⇤-closed ideal of H1, then I is an invariant subspace and the

Helson-Lowdenslager-Srinivasan theorem tells us that I = �H1 where � is an

inner function. The main result of [37] is the following.

Theorem 1.2.3 (Sarason [37, Theorem 1]). Let � be an inner function and let

K = H2 �H2. If T 2 B(K) is an operator in the commutant of ⇡K(S), then there

exists an operator R 2 B(H2) such that RS = SR, kRk = kTk and R|K = T .

This tells us that compressing Mf to the semi-invariant subspace H2  �H2

is an isometry of H1/I. The case where � is the Blaschke product with simple

zeroes at z1, . . . , zn gives us the Nevanlinna-Pick theorem.

8



1.3 ABRAHAMSE’S THEOREM

1.3 Abrahamse’s Theorem

The Hardy space H2 is not the only space of analytic functions on the disk that

has H1 as its multiplier algebra. The Bergman space L2
a is an example of a space

of analytic functions on the disk with mult(L2
a) = H1. In some sense H2 is the

“right” space of analytic functions to consider for the Nevanlinna-Pick problem.

There is a theory of Hardy spaces on multiply connected domains in the complex

plane. A thorough introduction to this subject can be found in Fisher’s book [19].

There are many natural ways to define the Hardy space of a multiply connected

domain R. Our eventual goal is to lift function theory from the region R to the

disk D through the use of the universal covering map p : D ! R. With this in

mind we choose a definition that is suited to our work.

The Hardy Hilbert space of a domain R is defined as the set of functions f

that are analytic in R with the property that |f |2 has a harmonic majorant, i.e., a

harmonic function u such that |f |2  u. We will denote this Hilbert space H2(R).

If we fix a point z 2 R, then the norm of f 2 H2(R) is defined as the infimum

u(z)
1
2 over all harmonic majorants u of |f |2. This definition depends on the point

z. However, as z varies over R, the induced norms are equivalent to one another.

If p : D ! R is the universal covering map, then harmonic measure µ for the point

p(0) lifts to Lebesgue measure on the circle. From this we can derive the existence

of boundary values for functions in the Hardy space H2(R). This reasoning can

be carried through to define the Hardy spaces Hp(R).

For a multiply connected domain R the Banach algebra H1(R) of bounded

analytic functions on R is the multiplier algebra of the reproducing kernel Hilbert

9



1.3 ABRAHAMSE’S THEOREM

space H2(R). However, the representation ⇡ that one obtains by compressing a

multiplier Mf to the span of the kernel functions for the points z1, . . . , zn 2 R is

not isometric [27]. In this respect, Nevanlinna-Pick theory on multiply connected

domains is already di↵erent from the classical result.

M. B. Abrahamse showed [1] that the Nevanlinna-Pick theorem could be gen-

eralized to multiply connected domains. His proof, like Sarason’s, uses duality

techniques. In order to get the correct result Abrahamse realized that one needs

to consider a family of reproducing kernel Hilbert spaces H2
�(R), with kernel func-

tion K�, indexed by � 2 Tm, where m is the connectivity of the region R. The

case � = (1, . . . , 1) 2 Tm corresponds to the space H2(R). These spaces are also

modules over H1(R) and there is a representation of ⇡� : H1(R)/I ! B(K�)

where K� is the span of the kernel functions for H2
�(R) at the points z1, . . . , zn.

Abrahamse showed that the direct sum of this family of representations was, in

fact, an isometry.

Theorem 1.3.1 (Abrahamse [1, Theorem 1]). Let z1, . . . , zn 2 R and w1, . . . , wn 2
C. There exists a function f 2 H1(R) such that kfk1  1 and f(zj) = wj if and

only if the matrices

A� :=
⇥

(1� wiwj)K
�(zi, zj)

⇤n

i,j=1
� 0 (1.11)

for all � 2 Tm.

It is not immediately clear why the theorem for multiply connected regions

should require a family of kernels, while the theorem for the disk requires only one.

The reason is hidden in the duality argument used by Sarason and Abrahamse.

10



1.4 CONSTRAINED NEVANLINNA-PICK PROBLEMS

The argument relies heavily on the ability to factor an H1 function as the product

of two H2 functions. This is called Riesz factorization [22, Theorem 20]

Theorem 1.3.2 (Riesz factorization). Let f 2 H1. There exists functions g, h 2
H2 such that |f |1/2 = |g| = |h| with f = gh.

For multiply connected domains a similar result is true. Given a function f 2
H1(R), there exists a � 2 Tm, g 2 H2

�, h 2 H2
�

such that f = gh, |f |1/2 = |g| = |h|.
Hence, we cannot factor f and remain in the space H2(R).

For an excellent introduction to the subject of Nevanlinna-Pick interpolation

consult the book by Agler and McCarthy [4].

1.4 Constrained Nevanlinna-Pick problems

We will study a class of Nevanlinna-Pick interpolation problems that have arisen in

the last 10 years. In keeping with the name given to one such problem [15] we call

them constrained Nevanlinna-Pick interpolation problems. We cite four reasons

why such problems may be interesting to look at. First, the problems are simple

variations on the classical Nevanlinna-Pick problem and are easily formulated. Sec-

ond, their theory is varied enough from the classical case to be of interest. Third,

the Nevanlinna-Pick problem for a multiply connected domain can be viewed as a

special case of the constrained problems we will look at. Finally, the recent work

of Agler and McCarthy [5, 6] on cusp algebras and embedded disks suggests that

there are close connections between these constrained problems and interpolation

problems on one-dimensional varieties in Cm.

11



1.4 CONSTRAINED NEVANLINNA-PICK PROBLEMS

Suppose, just as in the classical interpolation problem, that we are given n

points z1, . . . , zn 2 D and w1, . . . , wn 2 C. We require that the interpolating

function belong to a fixed subalgebra A of H1. It would be too much to hope that

we could study interpolation problems for any subalgebra of H1. Therefore, we

single out an interesting class of algebras that are easy to describe. Our motivating

example is to be found in the work of Solazzo [38, Example 3.3.5].

Select m distinct points a1, . . . , am 2 D and define

H1
a1,...,a

m

:= {f 2 H1 : f(a1) = . . . = f(am)}. (1.12)

This is easily seen to be a weak⇤-closed, unital subalgebra of H1. The algebra is in

fact of finite codimension in H1. The set of functions that vanish at the m points

a1, . . . , am is a weak⇤-closed ideal of H1 and it is easy to see that H1
a1,...,a

m

is merely

the unitization of this ideal. The factorization theory for Hardy spaces shows us

that the ideal Ia1,...,a
m

of functions in H1 that vanish at the m points a1, . . . , am

is equal to BH1, where B is the Blaschke product for the points a1, . . . , am, and

so

H1
a1,...,a

m

= C + BH1. (1.13)

The next example in the literature is the one studied in [15]. The algebra under

consideration is the set of functions f 2 H1 such that f 0(0) = 0. This algebra is

denoted H1
1 and we see that

H1
1 = C + z2H1. (1.14)

12



1.5 OUTLINE OF RESULTS

This suggests that the study of algebras of the form H1
B := C + BH1 where B is

a Blaschke product could be of value. In Chapter 2.2 we will also see that there

is a close connection between algebras of the form H1
B and H1(R), where R is a

multiply connected domain.

1.5 Outline of results

The work that follows deals with the Nevanlinna-Pick problem for a class of sub-

algebras of H1. The Nevanlinna-Pick problem lies at a crossroads of function

theory, operator theory and operator algebras. In the past, variations on the clas-

sical Nevanlinna-Pick problem have provided insight into operator theory.

In Chapter 1.4 we will describe two subalgebras that are contained in H1.

The first of these, H1
B , arises as the unitization of a weak⇤-closed ideal of H1.

The second is the fixed point algebra H1
� for the action on the disk of a Fuchsian

group �. The latter example is directly related to the algebras H1(R) where R is

a multiply connected domain.

We have seen that invariant subspaces and distance formulae play a central

role in Nevanlinna-Pick theory and so Chapter 3.1 is dedicated to classifying the

invariant subspaces for H1
B . Chapter 3.2 is central to our work. We prove two

distance formulae that will allow us to derive the Nevanlinna-Pick theorem for the

algebras H1
B and H1

� .

In Chapter 4.1 we begin by proving the interpolation results for H1
B . Com-

bining the distance formula for L1� with the a result of Forelli leads to a general-

ization of Abrahamse’s theorem for the algebra H1
� . The work in Chapter 4.2 is

13



1.5 OUTLINE OF RESULTS

an attempt to study the matrix-valued interpolation problem in H1
� when � is an

amenable group. It is a first attempt to understand the operator algebra structure

of H1
� /I.

Finally, in Chapter 5, we look at the notion of complexity for the matrix-valued

interpolation problem via C⇤-envelopes.

14



Chapter 2

Preliminaries

2.1 The spaces C + BHp

When we refer to the topology on the spaces Lp we will mean the norm topology

when 1  p <1 and the weak⇤ topology when p = 1. If S is a subset of Lp, then

we denote by [S]p the smallest closed subspace of Lp (weak⇤-closed, when p = 1)

that contains S. For ease of notation, when p = 2 we will denote [S]2 by [S].

Let g 2 H1 and let Hp
g denote the space [C · 1 + gHp]p. A function u 2 Hp

is called outer if [H1u]p = Hp. If p = 1, then the closure is with respect to the

weak⇤ topology. Every function f 2 Hp has a factorization of the form f = �u,

where � is inner and u is outer. The inner function � can be factored further into

a Blaschke factor B and a singular factor s. The zero set of B is exactly the same

as the zero set of f and, the inner function s and the outer function are non-zero

on D. The factorization f = Bsu is unique up to multiplication by a unimodular

scalar. For proofs of these facts we refer the reader to [22, Chapter 4]. Our first
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result shows for the space H1
g that it is enough to consider the case where g is an

inner function. Note that multiplication by an inner function is isometric on Lp

for 1  p  1 and also weak⇤ continuous on Lp for p > 1.

Proposition 2.1.1. Let g 2 H1. If g = �u is the factorization of g into its inner

part � and outer part u, then we have the following:

1. The space Hp
� is a closed subspace of Hp. If p = 1, then H1

� is a weak⇤-

closed subalgebra of H1.

2. The spaces Hp
g and Hp

� are equal.

Proof.

1. Since |�| = 1 a.e. on the circle, we see that �Hp is a closed subspace of Hp.

It follows quite easily from the fact that the constants are a one-dimensional

subspace that C + �Hp is closed. The fact that H1
� is an algebra is trivial.

2. It is straightforward that C + gHp ✓ Hp
�. For the converse let �+ �f 2 Hp

�.

Since u is outer, by the Helson-Lowdenslager-Srinivasan invariant subspace

theorem [21], we may choose a sequence fn 2 Hp (or net ft 2 H1, if p = 1)

such that ufn ! f (uft ! f). It follows that � + gfn ! � + �f and so

Hp
g ◆ Hp

�.

It is well known that the set of zeroes of a function f 2 H1 is countable or

finite. Further if {an}N
n=1 are the zeroes of f , counting multiplicity, where N is

16



2.1 THE SPACES C + BHP

either finite or infinite, then

X

n2N
(1� |an|) <1. (2.1)

This condition in (2.1) is known as the Blaschke condition. If the Blaschke condi-

tion is true, then we can form the Blaschke product

B(z) =
N
Y

n=1

|an|
an

✓

an � z

1� anz

◆

. (2.2)

The convergence of the sum in (2.1) guarantees that the Blaschke product B

converges and defines a bounded analytic function on D. The boundary values of

B are unimodular on the circle and so B is an inner function.

Our primary interest will be in the spaces Hp
B for a Blaschke product B and

for p = 1, 2,1. For the case where B is a Blaschke product we will fix notation as

follows. We denote by �a the elementary Möbius transformation of the disk given

by

�a(z) =
a� z

1� āz
, (2.3)

for a 6= 0, and �(z) = z, when a = 0. We will write

B =
N
Y

j=1

|↵j|
↵j

�m
j

↵
j

(2.4)

where N is either finite or infinite, {↵j}N
j=1 are distinct and mj � 1. The normal-

izing factor
|↵j|
↵j

is introduced to ensure convergence of the infinite product and is

defined to be 1 if ↵j = 0. We will assume throughout that B has at least 2 zeroes,
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i.e.,
PN

j=1 mj � 2. We point out that a function f 2 H1
B if and only if it satisfies

the following two constraints:

1. f(↵i) = f(↵j), 1  i, j  N .

2. If mj � 2, then f (i)(↵j) = 0 for i = 1, . . . ,mj � 1.

We will denote by K the Szegö kernel and by kz the Szegö kernel at the point

z, i.e., the element of H2 such that f(z) = hf, kzi for all f 2 H2. Note that the

Szegö kernel is actually a bounded analytic function on D and so is in H1. We

will use the letter z to represent a complex variable, the identity map on D and

the identity map on T.

2.2 The algebras H1
�

In addition to the spaces of the form H1
B we will be concerned in our work with

the fixed point algebra for certain group actions on the disk. In this section we

will describe what kinds of groups we are interested in. We will prove some basic

facts about the structure of these groups. These results are interesting in their

own right. Their main purpose is to enable a discussion of interpolation problems.

An automorphism of the disk is a holomorphic map of the disk onto itself, which

has a holomorphic inverse. An application of the Schwarz lemma shows that all

such maps are of the form

z 7! �
a� z

1� az
= ��a(z), (2.5)

where a 2 D and � 2 T. The set of automorphisms of the disk becomes a group

18
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under the usual composition of maps. All the groups that we will deal with will

be groups of automorphisms of the disk.

The group of automorphisms of the disk D is naturally identified with the

group PSL(2, R). The group PSL(2, R) is the quotient of the special linear group

SL(2, R) by its center {±I}. Since SL(2, R) is a subgroup of GL(2, R), it is a

topological group. A discrete subgroup of PSL(2, R) is called Fuchsian. In our

work we will be interested primarily in Fuchsian groups.

In Riemann surface theory Fuchsian groups play a central role. We outline the

essential facts and direct the reader to the book by Farkas and Kra [17], which

contains a thorough discussion of the connections between Fuchsian groups and

Riemann surfaces. An excellent introduction to the general theory of Fuchsian

groups is Katok [24]. Every Riemann surface R has a universal covering space

M and an associated covering map p : M ! R. The universal covering space

is a connected, simply connected Riemann surface and the map p is a covering

map. In addition to the usual conditions for a covering map, the map p is also

smooth. There are only 3 possible universal covering spaces for a Riemann surface:

the disk D, the Riemann sphere S2 and the complex plane C. The disk is the

universal covering space for “most” Riemann surfaces. The exceptions to this are

the Riemann sphere S2, the complex plane C, the two-torus T2 and the punctured

plane C⇤.

An automorphism � of the disk is called a deck transformation with respect to

(M, p) if and only if p�� = p. The set of all deck transformations is a group under

the usual composition of maps. When D is the universal covering space, the group

of deck transformations � is a torsion-free Fuchsian group that acts without fixed
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points. The group � is also isomorphic to the fundamental group of the Riemann

surface R, i.e., � ⇠= ⇡1(R). Conversely, if � is a discrete, torsion-free group of

automorphisms of the disk that acts without fixed points, then the quotient space

D/� can be given the structure of a Riemann surface and the natural projection

p : D ! D/� is the universal covering map. For example, if R is a m-holed

region in the complex plane, then ⇡1(R) = Fm, the free group on m generators. In

Chapter 4.2 we will see an explicit formula for the covering of an annulus by the

disk.

Let H1(R) denote the algebra of bounded analytic functions on the Riemann

surface R. The map p induces a map p⇤ : H1(R) ! H1 by composition and the

image of p⇤ is H1
� , the set of functions in H1 that are fixed by the action of �.

Hence as Banach algebras (operator algebras) H1(R) and H1
� are isometrically

(completely isometrically) isomorphic. We could, in theory, forget the domain R

and focus on the group � and the space H1
� . In Chapter 4.2, we will look at the

simplest examples of this.

In the Hardy space literature, the identification between H1(R) and H1
� was

originally used to prove results on boundary values of functions in the Hardy

spaces of R. Forelli [20] made significant use of this structure in proving the

corona theorem for regions in the complex plane. In Chapter 2.3, we will describe

Forelli’s ideas. His construction provides a way to free ourselves from some of the

function theory on multiply connected domains.

If � is a Fuchsian group, then we have a natural action of the group � on

L1 given by f 7! f � ��1, where � 2 �. This action restricts, since � is an

analytic map, to an automorphism of the space H1. The map f 7! f � ��1 also
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extends to a bounded linear operator on L1, but is no longer an isometry. Since

we will deal with Lp spaces and Hp spaces for di↵erent indices p we will denote

the corresponding fixed point space for the action of � by writing � as a subscript.

Of primary interest are the cases p = 1, 2,1.

Abrahamse’s results on interpolation show that we need to consider not only

the fixed point space but also consider the modulus automorphic functions, i.e.,

the elements of H2
�(R) [1, 19]. We denote the character group of � by �̂. The set

�̂ is the set of homomorphisms from � into the circle T. Since � is discrete these

homomorphisms are automatically continuous and �̂ is a compact group under

pointwise multiplication when endowed with the topology of pointwise convergence.

Given a character � 2 �̂ we define the character space Lp
� as the set of elements

in Lp such that f � � = �(�)f for all � 2 �. An element in Lp
� for some character

� 2 �̂ will be called character automorphic. The corresponding Hardy space is

defined by Hp
� := Lp

�\Hp. We define a function f 2 Lp to be modulus automorphic

if and only if |f | 2 LP
� . The absolute value of a character automorphic element of

Lp is modulus automorphic.

We will call two Fuchsian groups �1 and �2 conjugate if there exists an auto-

morphism of the disk � such that ��1 = �2�. If f � ↵ = f for all ↵ 2 �1, then

f � (��1��) = f for all � 2 �2 and so f � ��1 2 H1
�2

. Therefore, the spaces H1
�1

and H1
�2

are completely isometrically isomorphic via the map f 7! f � ��1. Hence,

as far as the operator algebra structure is concerned the operator algebra H1
� is

una↵ected by conjugating the group �.

Two factorization results are central to our work. The first result is the factor-

ization of functions in Hp into their inner and outer factors and the factorization
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of inner functions into Blaschke products and singular factors. The second result

is Riesz factorization, which we stated as Theorem 1.3.2. We will now collect a

few elementary facts about the factorization of functions in Hp
�.

Proposition 2.2.1. Let � be a Fuchsian group and let � 2 �̂. If f 2 Hp
�, then |f |

is modulus automorphic. If u 2 Hp is an outer function and |u| 2 Lp
�, then there

exists � 2 �̂ such that u 2 Hp
�.

Proof. If u is outer, then u � � is outer for all � 2 �, since composition by � is

continuous and invertible on Hp. Two outer function u and v have equal modulus

if and only if there exists a scalar � 2 T such that u = �v, [16, page 142, Corol-

lary 6.23]. We have |u � �| = |u| � � = |u| and so there exists �(�) 2 T such that

u � � = �(�)u. We need to show that � 2 �̂. If �1, �2 2 �, then

�(�1�2)u = u � (�1�2) (2.6)

= (u � �1) � �2 (2.7)

= �(�1)(u � �2) (2.8)

= �(�1)�(�2)u. (2.9)

Since u is non-zero, � is a character.

Proposition 2.2.2 (Riesz factorization). Let � be a Fuchsian group and let � 2 �̂.

If f 2 H1
�, then there exists a character � 2 �̂, an outer function u 2 H2

� and an

inner function � 2 H1
��2� such that f = �u2.

Proof. It is well known [22, Theorem 19] that f has a factorization of the form

�u2, where � is inner and u 2 H2 is outer. It follows from Proposition 2.2.1
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that |f |1/2 = |u| 2 L2
� and so u 2 H2

� for some � 2 �̂. It follows easily that

� 2 H1
��2�.

Proposition 2.2.3. If f 2 H1
� and f = Bsu is the factorization of f into a

Blaschke product B, a singular function s and an outer function u, then there

exist characters �, ✓ 2 �̂ such that B 2 H1
� , u 2 H1

✓ and s 2 H1
(�✓)�1�.

Proof. Note that if f(z) = 0, then f(�(z)) = 0 and so the zeroes of f are made up

of the union of countably many disjoint orbits. The Blaschke product B vanishes

precisely on the zero set of f . Since � permutes the orbit of a point, we see that

B � � also vanishes on the zero set of f and so B � � = BC where C is inner. A

similar argument shows that B � ��1 = BD with D an inner function. We have,

B = B � � � ��1 (2.10)

= (BC) � ��1 (2.11)

= (B � ��1)(C � ��1) (2.12)

= (BD)(C � ��1) (2.13)

= B(D)(C � ��1). (2.14)

Since H1 has no zero divisors we get that D(C���1) = 1 and so D = C���1 2 H1.

This shows that D and C are constant and so B � � = �(�)B for some scalar

�(�) 2 T. It is easy to check that � 2 �̂.

Since |f | = |u| 2 L1
�, we see by Proposition 2.2.1 that u 2 H1

✓ for some character

✓. It now follows from the uniqueness of the factorization that s 2 H1
(�✓)�1�.

If � is a group of automorphisms, then we denote by �(z) the orbit of the point
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z under the action of �, i.e., �(z) := {�(z) : � 2 �}. The stabilizer subgroup at

the point z 2 D is denoted �z, i.e., �z := {� 2 � : �(z) = z}.
One consequence of the proof Proposition 2.2.3 is the following: if the zero set

of the Blaschke product B is the orbit �(z), then B 2 H1
� for some � 2 �̂. We

will call this character � the the character associated to the Blaschke product B or

the character associated to the the point z.

Let us describe the connection between the spaces H1
� and the spaces H1

B
z

,

since this motivates the results of Chapter 4.1. Let us assume that � is the group

of deck transformations that arise from a universal covering map of a bounded

multiply connected domain. In this case the connection between the algebras H1
B

and the algebra H1
� is the following: The algebra H1

� is the set of functions in

H1 that are fixed by �. Said di↵erently, this is the set of functions in H1 that

are constant on the orbits of points under the action of �. Since R is assumed

to be a bounded domain, we see that the space H1(R) contains a non-constant

function. Therefore, for any point z 2 D, the points in �(z) satisfy the Blaschke

condition (2.1). If z 2 D and �(z) is the orbit of z under �, then we can form the

Blaschke product Bz with zero set �(z). A function f 2 H1 is constant on �(z)

if and only if f 2 H1
B

z

= C + BzH
1 and so

H1
� =

\

{H1
B

z

: z 2 D}. (2.15)

Note in these cases that �z = {e} for all z 2 D.

If we allow our groups to act with fixed points or have torsion, then it is entirely

possible that the fixed point space is trivial, i.e., reduces to just the constant
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function. The simplest example of this is the group generated by an irrational

rotation of the disk. Here the group of automorphisms is isomorphic to Z. In this

case the Blaschke product Bz does not converge for any z 6= 0. Therefore, what

we seek is a middle ground.

Since our interest is very much in analytic functions we will be concerned with

H1
� quite a bit. As mentioned in the last paragraph, this space could be trivial.

However, when H1
� is non-trivial, it must be infinite-dimensional. This is a general

fact about subalgebras of H1.

Proposition 2.2.4. If A is a unital subalgebra of H1 that contains non-constant

functions, then A is infinite dimensional.

Proof. Assume to the contrary that A is n-dimensional. Let f 2 A be non-

constant. By subtracting f(0), we may assume that f(0) = 0 and f 6= 0. The

elements 1, f, f 2, . . . , fn must be linearly dependent and so there exists a0, . . . , an

such that
Pn

j=0 ajf
j = 0. Evaluating at z = 0, we get a0 = 0 and so f(a1 + a2f +

. . . + anf
n�1) = 0. Since f 6= 0, a1 + a2f + . . . + anf

n�1 = 0. Repeating the

argument above yields a1 = . . . = an = 0, a contradiction.

Proposition 2.2.5 and Proposition 2.2.6 provide some consequences about the

structure of � that follow from assuming that the space H1
� is non-trivial. These

results allow us to deal with torsion and fixed points in a systematic way. The

result also explains why it is enough to work with Fuchsian groups acting on the

disk.

Proposition 2.2.5. Let � be a group of automorphisms and let �0 be the stabilizer

at the origin. If �0 is finite, then �0 is cyclic.
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Proof. Let � 2 �0 and let m = |�0|. We have �(0) = 0 and so there exists a

constant � 2 T such that �(z) = �z. Note that �m = 1 and so �0 is a subgroup

of the cyclic group h⇢i, where ⇢ is rotation through the angle
2⇡

m
. Since �0 is a

subgroup of a cyclic group, the group �0 is cyclic and �0 = h⇢i, since both �0 and

⇢ have order m.

Proposition 2.2.6. Let � be a group of automorphisms of the disk. Assume that

the algebra H1
� is non-trivial, i.e., contains a non-constant function. The following

are true:

1. The stabilizer �0 is a finite, cyclic group.

2. The infinite Blaschke sum
P

�2�(1� |�(0)|) converges.

3. The group � is Fuchsian (discrete).

Proof.

1. Every element � 2 �0 fixes the origin. Hence, � is a rotation of the disk and

there exists a constant � 2 T such that �(z) = �z. Let f be a non-constant

function in H1
� and let ak, k 6= 0, be a non-zero Fourier coe�cient of f .

For every � 2 �0 we have f(�(z)) = f(z) and so �kak = ak. This yields,

�k = 1 and so �0 is finite. The claim about �0 being cyclic follows from

Proposition 2.2.5.

2. If f 2 H1
� is non-constant, then by subtracting a constant we may assume

that f is non-zero and vanishes at 0. Since f � � = f we see that f(�(0)) =

f(0) = 0 for all � 2 � and so
P

w2�(0)(1 � |w|) < 1. If ↵ 2 �, then
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the cardinality of �0 is equal to the cardinality of �↵(0). In fact, the two

stabilizers are isomorphic via the map � 7! ↵�↵�1. Therefore,

X

�2�

(1� |�(0)|) = |�0|
X

w2�(0)

(1� |w|) <1. (2.16)

3. If � is not discrete, then there exists a sequence of distinct elements �n 2 �

such that �n ! e, the identify element of �. This forces �n(0) ! 0 which

contradicts the convergence of the Blaschke sum.

Note that if the series
P

�2�(1�|�(0)|) does converge, then the argument above

shows that �0 is finite and � is discrete.

If the stabilizer �0 is finite, and the series
P

�2�(1� |�(0)|) converges, then we

define two Blaschke products B0 and B that arise naturally. First consider the

Blaschke product B0 whose zero set is �(0). We call B0 the Blaschke product for

the orbit �(0). Let m = |�0| and define B := Bm
0 . We call B the Blaschke product

associated to �. If it is the case that only the identity map fixes the origin, then

m = 1 and B = B0. If � 2 �, then B0 � � is a Blaschke product whose zero set

is the same as the zero set of B0. It follows, just as in Proposition 2.2.3, that

B0 � � = �(�)B0 for some character �.

Let � 2 �0. Since �(0) = 0, there exists a scalar � 2 T such that �(z) = �z.

Let �n(0), for n = 1, . . . , N , be an enumeration of the distinct non-zero elements

of �(0). Here N can be either finite or infinite. The Blaschke product B0 can be

27



2.2 THE ALGEBRAS H1
�

written

B0(z) = z

N
Y

n=1

|�n(0)|
�n(0)

�n(0)� z

1� �n(0)z
. (2.17)

Hence,

B0(�z) = (�z)
N
Y

n=1

|�n(0)|
�n(0)

�n(0)� �z

1� �n(0)�z
(2.18)

= �z

N
Y

n=1

�

���n(0)
�

�

��n(0)

��n(0)� z

1� �n(0)�z
. (2.19)

We have, ��n(0) = ��1(�n(0)) and so ��n(0), for n = 1, . . . , N , is another enu-

meration of the non-zero points in the orbit �(0). Hence, B0(�z) = �B0(z). If

|�0| = m, then �(z) = e
2⇡i

m (z) is a generator for �0 and so B0(e
2⇡i

m z) = e
2⇡i

m B0(z)

for all z 2 D.

Proposition 2.2.8 will show that we can build an orthonormal basis from the

Blaschke product B associated with the group �. The Hilbert spaces H2
�, for

� 2 �̂, are subspaces of H2. Therefore, H2
� is a reproducing kernel Hilbert space

with kernel function K�. We denote by k� the normalized kernel function for the

space H2
� at the point 0. For the space H2

� this is just the constant function 1.

Lemma 2.2.7. Let � be a Fuchsian group, let B0 be the Blaschke product for the

orbit of the origin, let m = |�0| and let B = Bm
0 be the Blaschke product associated

with the group �. Let � be the character such that B0 2 H1
� . If f 2 H2

�, then

B|(f � f(0)).

Proof. Let � 2 �0 be a generator with �(z) = �z = e
2⇡i

m z. If f � � = f , then

f(�z) = f(z) for all z 2 D. Let ak denote the kth Fourier coe�cient of f . We

have �kak = ak for all k � 0. Since � has order m, we see that ak = 0 unless m|k.
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Therefore, g := f � f(0) = zmh for some function h 2 H2. Since g 2 H2
� and 0 is

a root of g of multiplicity m we see that every point in the orbit �(0) is a zero of

multiplicity m for g. Hence, Bm
0 = B divides g = f � f(0).

If f(0) = 0 and we write f = Bh, then we see that

B(z)h(z) = B(�z)h(�z) = �mB(z)h(�z). (2.20)

Since |�0| = m, we get h(�z) = h(z). Therefore, if h(0) = 0, then we can repeat

the argument from the above proof to show that B|h.

Proposition 2.2.8. Let � be a Fuchsian group, let B0 be the Blaschke product

for the orbit of the origin, let m = |�0| and let B = Bm
0 be the Blaschke product

associated with the group �. Let � be the character such that B 2 H1
� . An

orthonormal basis E of H2
� is given by the non-zero elements of the set {Bnk�n

:

n � 0}.

Proof. It is straightforward to check that E is orthonormal. Suppose that f 2 H2
�,

f 6= 0 and f ? E . Since f ? 1 we have f(0) = 0 and f = Bf1. Since f � � = f for

all � 2 �, we see that f vanishes on the orbit of 0 and so f = Bf1, by Lemma 2.2.7.

Now, Bf1 = f = f � � = (B � �)(f1 � �) = �(�)Bf1 � � and so f1 � � = �(�)f1.

Now, 0 =
D

Bf1, Bk��1
E

=
D

f1, k
��1
E

= f1(0). Repeating the argument above we

see that f = Bnfn with fn(0) = 0. Since f is non-zero , f can only have a zero of

finite multiplicity at the origin, a contradiction.

Corollary 2.2.9. Let � be a Fuchsian group, let B0 be the Blaschke product for

the orbit of the origin, let m = |�0| and let B = Bm
0 be the Blaschke product
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associated with the group �. If the Blaschke product B is invariant under �, then

{Bn : n � 0} is an orthonormal basis for H2
�.

2.3 The Forelli projection

To begin this section we describe a construction due to Forelli [20].

Let � be a Fuchsian group and let m denote normalized Lebesgue measure on

the circle T. A set E ✓ T is called �-invariant if and only if m(E4��1(E)) = 0

for all � 2 �. The set of all measurable �-invariant sets forms a sub �-algebra of

the algebra of Lebesgue measurable sets and we denote this sub �-algebra M�.

The set E is �-invariant if and only if ���1(E) = �E a.e. with respect to m, for

all � 2 �. The characteristic functions of �-invariant sets generate the algebra

L1(T,M�, m). The algebra L1� is generated by its projections, i.e., by the char-

acteristic functions that satisfy ���1(E) = �E � � = �E for all � 2 �. This shows

that we have a natural identification between L1� and the space L1(T,M�, m). A

similar argument identifies the corresponding Lp spaces.

Given an element g 2 Lp, p � 1, consider the linear functional lg : Lq
� ! C

defined by

lg(f) :=

Z

T
fg dm. (2.21)

This functional is weak⇤ continuous on L1. By a standard duality argument lg is

induced by integration against an element g̃ 2 Lq
�. If we let � : Lp ! Lp

� be defined

by �(g) = g̃, then � is the usual conditional expectation of Lp onto Lp(T,M�, m)

that arises in probability theory. The following properties are well known.

1. The map � is a projection, i.e., �2 = �.
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2. When p = 2, the projection � is selfadjoint.

3. For p > 1, the projection � is weak⇤ continuous.

4. For p � 1, f 2 Lp and E 2M�

Z

E

�(f) =

Z

E

f. (2.22)

5. For 1  p  1, q such that q�1 + p�1 = 1, f 2 Lp and g 2 Lq
�,

�(fg) = �(f)g (2.23)

If we combine the properties in (2.22) and (2.23) we also get

Z

E

�(f)g =

Z

E

fg =

Z

E

�(fg), (2.24)

where E 2M�.

The corresponding Hardy space is defined by Hp
� := Hp \ L1

�. In the classical

case the Lebesgue space L2 is the orthogonal direct sum of H2 and H2
0 , i.e., every

square integrable function on the circle is the sum of an analytic and an anti-

analytic part. For the spaces L2
� this is no longer true.

Let f 2 L2 and decompose f = g + h, where g 2 H2 and h 2 H2
0 . Composing

with � 2 � we get

f = f � � = g � � + h � � = g + h. (2.25)

From this we get g � � � g = h� h � � 2 C and so g � � � g ⌘ h� h � � ⌘ c�,

where c� is a constant (that depends on f). The constant is easily computed by
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integrating

c� =

Z

g � � � g (2.26)

= g(�(0))� g(0) (2.27)

=
⌦

g, k�(0) � 1
↵

. (2.28)

Similarly, c� =
⌦

h, 1� k�(0)

↵

. Combining these two equations, we get

2c� =
⌦

f, k�(0) � k�(0)

↵

(2.29)

=
⌦

�(f), k�(0) � k�(0)

↵

(2.30)

=
⌦

f, �(k�(0) � k�(0))
↵

. (2.31)

If we set v� = �i�(k�(0) � k�(0)), then v� is a real-valued function in L1� with

the property that
Z

fv↵ = 2ic� (2.32)

for all � 2 �. The defect space N is defined by

N := span{v� : � 2 �}. (2.33)

If f 2 L2
� is orthogonal to v� for all � 2 �, then g � � � g = 0 and so g 2 H2

�.

Similarly, h 2 H2
0,� and we see that L2

� = H2
� �H2

0,� � [N ].

If �1, �2 2 �, then

c�1��2 = g � (�1 � �2)� g (2.34)
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= g � (�1 � �2)� g � �2 + g � �2 � g (2.35)

= (g � �1 � g) � �2 + (g � �2 � g) (2.36)

= c�1 + c�2 (2.37)

It follows that

Z

fv�1��2 = 2ic�1��2 = 2i(c�1 + c�2) =

Z

f(v�1 + v�2). (2.38)

Since this is true for all f 2 L2
� we get v�1��2 = v�1 + v�2 .

What all of this shows is that the map � 7! v� is a homomorphism from � into

the additive group N . This homomorphism must factor through the commutator

subgroup [�, �] to give a homomorphism from �/[�, �] into N . Given a set of

generators {�s : s 2 S} ✓ �/[�, �] the vectors vs := v�
s

, for s 2 S, span the space

N . If the group � is finitely generated, then the space N is finite dimensional

and the dimension of N is smaller than the minimal number of generators of

�/[�, �]. Forelli showed that the dimension of N is equal to the minimal number

of generators of �/[�, �] in the case where � is the group of deck transformations

associated with a universal covering map of a multiply connected domain. As

shown in [20] many results follow from this equality, including a corona theorem

for H1
� , the key stepping stone being the construction of a bounded projection

P : H1 ! H1
� . Since we are not assuming the stronger condition that our group

� arises as a group of deck transformations, we cannot use this latter projection.

If an element � 2 � has finite order, say m, then mv� = v�m = 0 and so v� = 0.

If �/[�, �] is generated by elements of finite order, then N is trivial. This is both
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useful and important. It will show in particular that a very naive generalization

of the result on C⇤-envelopes from [28] is false.

We will assume in all our work that N is finite-dimensional. This is a natural

condition from a function theory point of view. The assumption about N means

that Hp
� + N is a closed subspace of Lp for all 1  p  1. It is useful to keep

in mind that N ⇢ L1� ✓ Lp
� for all 1  p  1. Note that when q > 1, the

spaces Hq
� and Hq

� + N are also weak⇤ closed. This is a simple consequence of the

fact that weak⇤ limits preserve point values and the fact that N is assumed finite-

dimensional. Since duality arguments will play a central role in our interpolation

results we would like to gather some results on the duality between the di↵erent

Hp
� spaces.

Proposition 2.3.1. For 1  p < 1, the dual of Lp
� can be identified with Lq

�,

where q = p
p�1 . In this identification the following are true:

1. (Hp
�)? = Hq

0,� + N

2. (Hq
�)? = Hp

0,� + N

3. (Hq
� + N)? = Hp

0,�

4. (Hp
� + N)? = Hq

0,�

Proof. The statement about Lp
� spaces follows from standard facts about the Lp

spaces of a probability measure.

For p = 2, we have seen already that L2
� = H2

� �H2
0,� � N and so the results
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above are valid. It is easy to see that

Z

�(h)g =

Z

hg = 0, (2.39)

for all h 2 H2, g 2 H2
0,� and so �(H2) = L2

�  H2
0,� = H2

� + N .

We will show that Hp
� = (Hq

0,� + N)? and the remaining results will follow

either by duality or by a similar argument. Note that the spaces Hq
� and Hq + N

are weak⇤ closed in Lq.

We first show that �(Hp) = Hp
� + N . Let f 2 Lq

�. Note that f 2 �(Hp)? if

and only if
R

f�(g) =
R

fg = 0 for all g 2 Hp if and only if f 2 Hq
0 \ Lq

� = Hq
0,�.

Hence, �(Hp)? = Hq
0,�.

Let h 2 Hp
�, v 2 N and g 2 Hq

0,�. Since v� 2 L1� and g is analytic we get

Z

gv� =

Z

g�(k�(0) � k�(0)) (2.40)

=

Z

g(k�(0) � k�(0)) (2.41)

= g(�(0))� g(0) = 0. (2.42)

It follows that
Z

g(h + v) =

Z

gh +

Z

gv = 0, (2.43)

which gives Hp
� + N ✓ (Hq

0,�)?. This also yields

�(Hp) = (�(Hp)?)? = (Hq
0,�)? ◆ Hp

� + N. (2.44)
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Let g 2 (Hp
� + N)? and let f 2 Hp. We will show that

Z

gf =

Z

g�(f) = 0, (2.45)

which will establish the fact that (Hp
�+N)? ✓ �(Hp)?. We know that

R

g(h+v) =

0 for all h 2 Hp
� and v 2 N . Let fn 2 H1 and suppose that fn ! f in the p-

norm. Since fn 2 H2, we can write �(fn) = hn + vn, where hn 2 H2
� and vn 2 N .

However, vn 2 L1 and so hn 2 H1
� ✓ Hp

�. Therefore,

Z

g(hn + vn) =

Z

g�(fn) = 0 (2.46)

for all n. Since g 2 �(Hp)? and

Z

g�(f) = lim
n!1

Z

g�(fn) = 0. (2.47)

We have established that �(Hp)? = Hq
0,� and that �(Hp)? ◆ (Hp

� +N)?. This

combined with the fact that �(Hp) ◆ Hp
� + N shows us that �(Hp) = Hp

� + N

and (Hp
� + N)? = Hq

0,�.

Proposition 2.3.2. For 1  p <1, the closure [H1
� ]p = Hp

�.

Proof. Consider the case p � 2. Let f 2 Hp
� and let fn 2 H1 converge to f in Lp.

Since the Lp norm dominates the L2 norm we see that fn ! f in L2. If we project

fn onto �(fn) we can choose gn 2 H1
� and vn 2 N such that gn + vn = �(fn)

and gn + vn ! f in the Lp norm and in the L2 norm. In particular kvnk2 ! 0.

However, on the finite-dimensional space N the L2 norm and the Lp norm are

equivalent and so kvnkp ! 0. It follows that gn ! f in Lp.
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Let 1  p < 2, let H1
� ✓ Hp

� and let (H1
� )? denote the annihilator of H1

� in

Lq
�, where 2  q and q�1 + p�1 = 1. We have

(H1
� )? =

⇢

f 2 Lq
� :

Z

fg = 0 for all g 2 H1
�

�

(2.48)

✓
⇢

f 2 L2
� :

Z

fg = 0 for all g 2 H1
�

�

(2.49)

= L2
�  

⇥

H1
�

⇤

= L2
�  H2

� = H2
0,� + N. (2.50)

Hence, (H1
� )? ✓ Lq

� \ (H2
0,� + N) = Hq

0,� + N , since N ✓ L1� ✓ Lq
�. The reverse

inequality follows from Hq
0,� + N ✓ H2

0,� + N , H1
� ✓ H2

� and the result for p = 2.

We have shown that (H1
� )? = Hq

0,� + N . It follows from Proposition 2.3.1 that

[H1
� ]p = ((H1

� )?)? = (Hq
0,� + N)? = Hp

�.
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Chapter 3

Distance Formulae

3.1 Invariant subspaces and reflexivity

While discussing Sarason’s approach to the Nevanlinna-Pick problem in Chap-

ter 1.2, we saw that there is a close connection between the Nevanlinna-Pick the-

orem and shift invariant subspaces of H2. Motivated by these connections, and in

preparation for later results, we begin by classifying the subspaces of Lp that are

invariant for the algebra H1
B . This generalizes the Helson-Lowdenslager-Srinivasan

theorem.

Theorem 3.1.1. Let B be an inner function and let M be a closed subspace of

Lp which is invariant for H1
B . Either there exists a measurable set E such that

M = �ELp or there exists a unimodular function � such that �BHp ✓M ✓ �Hp.

In the latter case, if p = 2, then there exists a subspace W ✓ H2  BH2 such that

M = �(W �BH2).

Proof. The space [BH1M]p is an H1-invariant, closed subspace of Lp and since
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B is inner [BH1M]p = B[H1M]p. By the invariant subspace theorem for H1,

either [H1M]p = �ELp for some measurable subset E of the circle or [H1M]p =

�Hp for some unimodular function �. In the former case

M ◆ B[H1M]p = B�ELp = �ELp ◆M. (3.1)

In the latter case we see that �Hp = [H1M] ◆M ◆ B[H1M]p = �BHp. For

the case p = 2 since BH2 ✓ �M ✓ H2 we see that M = �(W � BH2) where

W ✓ H2  BH2.

As a corollary we obtain:

Corollary 3.1.2 ([15, Theorem 2.1]). Let H1
1 denote the algebra of functions

in H1 such that f 0(0) = 0. A subspace M of L2 is invariant for H1
1 , but not

invariant for H1, if and only if there exists a unimodular function �, scalars

↵, � 2 C with |↵|2 + |�|2 = 1, ↵ 6= 0, such that M = �([↵+ �z]� z2H2).

Proof. From the previous result we see that M = �(W � z2H2) where W ✓
H2  z2H2 = span{1, z}. Since M is not invariant for H1 see that W is one-

dimensional and ↵ 6= 0.

We will identify unimodular functions that di↵er only by a constant factor of

modulus 1. If S is a subspace of H2, then Beurling’s theorem tells us that [H1S] =

�H2 for some inner function �S . The inner function �S is called the inner divisor

of S. If S1 and S2 are two subsets of H2, then we define their greatest common

divisor gcd(S1,S2) to be the inner divisor of [H1(S1 [ S2)] and the least common

multiple lcm(S1,S2) to be the inner divisor of [H1S1] \ [H1S1]. For a function f
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3.1 INVARIANT SUBSPACES AND REFLEXIVITY

the inner divisor of {f} is clearly the inner factor of f . For functions f1, f2 2 H2

we define gcd(f1, f2) := gcd({f1}, {f2}) and lcm(f1, f2) := lcm({f1}, {f2}). For a

more detailed description of these operations, we refer the reader to [13].

Let A ✓ B(H) be an operator algebra. Associated to this operator algebra is

its lattice of invariant subspaces, which is defined as the set of subspaces of H that

are invariant for A. We will denote the lattice of non-trivial, invariant subspaces

of A by Lat(A).

An important consequence of Beurling’s theorem is that it allows a complete

description of the lattice of invariant subspaces for H1. Two shift invariant sub-

spaces �H2 and  H2 are the equal if and only if � = � for a unimodular constant

�. Since we have chosen to identify inner functions that di↵er only by a constant,

we see that that the shift invariant subspaces of H2 are parameterized by inner

functions. There is a natural ordering of inner functions. If �, are inner func-

tions, then we say that �   if and only if there exists an inner function ✓ such

that �✓ =  . This makes the set of inner functions a lattice with meet and join

given by

� ^  = gcd(�, ),� _  = lcm(�, ). (3.2)

In this ordering the inner function 1 is the least element of the lattice and the

lattice has no upper bound. The map � 7! �H2 is a bijection between the lattice

of inner functions and the the lattice of non-trivial, invariant subspaces for H1.

This identification is a lattice anti-isomorphism, i.e., order reversing isomorphism,

taking meets to joins and joins to meets.

For the lattice Lat(H1
B ) the situation is di↵erent. There are two parameters
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that determine an invariant subspace M 2 Lat(H1
B ), an inner function � and a

subspace W ✓ H2 BH2. However, the subspace M does not uniquely determine

� and W . Conversely, di↵erent choices of � and W can sometimes give rise to the

same subspace. A simple example is obtained by setting B = z2, in which case

zH2 = z
�

[1, z]� z2H2
�

= [z]� z2H2. (3.3)

If M = �(W � BH2), then the subspace W = �M  BH2. It is always possible

to make a canonical choice of inner function and subspace W . The canonical

choice is to set the inner function equal to �M, the inner divisor of M, and to let

WM = �MM BH2.

We now describe the extent to which the decomposition of the subspace M
into the form �(W � BH2) fails to be unique. It is useful to keep in mind the

rather trivial example in (3.3). Note that in addition to being H1
z2 -invariant the

subspace zH2 is also shift invariant.

Theorem 3.1.3. Let M 2 Lat(H1
B ), let �M be the inner divisor of M and let

WM = �MM BH2. Let  be inner and V be a subspace of H2 BH2 such that

M =  (V �BH2). The following are true:

1. The inner function gcd(WM, B) = 1.

2. The inner function   �M and

�MWM =  V �B( H2  �MH2). (3.4)

3. If ✓ is such that  ✓ = �M, then ✓ = gcd(B, V ).
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4. We have �M =  if and only if WM = V .

5. If M 62 Lat(H1
C ) for all C < B , then  = �M and V = WM.

Proof.

1. Note that �M gcd(WM, B) is an inner function that divides M. Since �M is

the inner divisor of M we get gcd(WM, B) = 1.

2. Since � is the inner divisor of M, it follows that  |�. Let ✓ be the inner

function such that  ✓ = �. We have,

 ✓(WM �BH2) = �M(WM �BH2) =  (V �BH2). (3.5)

It follows that

✓WM � ✓BH2 = V �BH2 = V �B(H2  ✓H2)�B✓H2. (3.6)

Hence,

✓WM = V �B(H2  ✓H2). (3.7)

Multiplying by  gives (3.4).

3. From (3.7) we see that ✓ divides both V and B and so ✓  gcd(B, V ).

From (3.7) we get that gcd(B, V )|✓WM. Since gcd(WM, B) = 1 it must be

the case that gcd(B, V )  ✓. Hence, ✓ = gcd(B, V ).

4. The conditions  = �M and WM = V are equivalent. If  = �M, then (3.7)

shows that WM = V . Conversely, if WM = V , then (3.7) shows that ✓WM ◆

42
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WM. If w 2 WM ✓ ✓WM, then there exists w1 2 WM such that w =

✓w1. Repeating the argument we find that there exists wn 2 WM such that

✓nwn = w. If ✓ 6= 1, then the equation ✓nwn = w for all n � 0, contradicts

the fact that ✓ cannot divide w with infinite multiplicity. Hence, ✓ = 1 and

�M =  ✓ =  .

5. If ✓ 6= 1, then

M =  (V �BH2) =  ✓(X � CH2), (3.8)

where C < B. Hence, M 2 Lat(H1
C ).

Theorem 3.1.3 indicates that the lattice of invariant subspaces for H1
B is more

complex than the lattice of shift invariant subspaces. Although the canonical choice

of inner divisor seems natural, this choice does not behave as expected with respect

to the lattice operations. The lattice of invariant subspaces is highly relevant to

distance problems and the notion of hyperreflexivity of an operator algebra. We

will say more about this later in this section. For this reason a better understanding

of the structure of Lat(H1
B ) is needed. We do not, as yet, have at our disposal a

useful way to describe the lattice operation in Lat(H1
B ). For illustrative purposes

we examine what happens to the inner divisor when we take meets and joins of

elements in Lat(H1
B ). Note that Lat(H1) is a sublattice of Lat(H1

B ). Any good

description of Lat(H1
B ) would have to take into account the fact that Lat(H1) is

the lattice of inner functions.

Let M = �M(WM � BH2),N = �N (WN � BH2) 2 Lat(H1
B ), where �M and
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�N are the inner divisors of M and N respectively. Let X = M \N . We have,

B lcm(�M,�N )H2 ✓ lcm(B�M, B�N )H2 (3.9)

= (B�MH2) \ (B�NH2) (3.10)

✓M \N (3.11)

= X (3.12)

✓ (�MH2) \ (�NH2) (3.13)

= lcm(�M,�N )H2. (3.14)

Hence, �X satisfies

lcm(�M,�N )  �X  B lcm(�M,�N ). (3.15)

These are the best general bounds we have. If we consider the case where

�M = �N = 1, then we see that

X = M \N (3.16)

= (WM \WN )�BH2 (3.17)

= gcd(WM \WN , B)(WX �BH2) (3.18)

If WM \WN = {0}, then the inner divisor �X = B. However, if W1 \W2 is non-

trivial the situation can be di↵erent. Let B = z5, letM = [1+z2, z3]�z5H2 and let

N = [1� z2, z3]� z5H2. It is straightforward to check that the inner divisor �X of

the intersection X = M\N is divisible by z3. Since the functions 1+z2 and 1�z2
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are outer we see that �M = �N = 1. Note that gcd(�M,�N ) = 1 < �X < z5 = B.

If we consider the join of two subspaces Y = M _ N , then we have �Y =

gcd(�M,�N ). The inequality gcd(�M,�N )  �Y follows from

M _N ✓ (�MH2) _ (�NH2) = gcd(�M,�N ). (3.19)

Since �Y |Y , we have �Y |M and �Y |N . Hence, �Y | gcd(W, B)�M = �M and

�Y | gcd(V, B)�N = �N . Therefore, �Y  gcd(�M,�N ), which implies �Y =

gcd(�M,�N ).

It is not di�cult to extend Theorem 3.1.1 to the vector-valued setting. If H is

a separable Hilbert space, then we denote by H2
H the H-valued Hardy space. The

natural action of H1 on H2
H is given by (fh)(z) = f(z)h(z) and this makes H2

H a

module over H1. This action obviously restricts to H1
B and we say that a subspace

M of H2
H is invariant for H1

B if and only if H1
B M ✓ M. We denote by H1

B(H)

the set of B(H)-valued bounded analytic functions. An element of H1
B(H) is called

rigid if �(ei✓) is a partial isometry a.e. on T. A subspace M is invariant under H1

if and only if there exists a rigid function � 2 H1
B(H) such that M = �H2

H [21].

The proof of the scalar case goes through with the obvious modifications to give

the following result.

Theorem 3.1.4. If M is a closed subspace of H2
H which is invariant for H1

B , then

there exists a rigid function � 2 H1
B(H) and a subspace V ✓ H2

H  BH2
H such that

M = �(V �BH2
H).

Proof. Let M ✓ H2
H be an invariant subspace for H1

B . As in the proof of Theo-

rem 3.1.1 we form the shift invariant subspace [H1M] ✓ H2
H. By the invariant
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subspace theorem in [21] we can write [H1M] = �H2
H for a rigid function �. Now,

M ◆ [BH1M] = B[H1M] = B�H2
H and so B�H2

H ✓ M ✓ �H2
H. It follows

that M = W � B�H2
H, where W ✓ �H2

H  B�H2
H. If w 2 W , then w = �f for

some f 2 H2
H BH2

H. Choosing V to be the subspace of elements f 2 H2
H BH2

H

such that �f 2W completes the proof.

This last result explains to some extent why we expect the matrix-valued result

and scalar-valued result to be di↵erent. When studying the interpolation problem

and the associated distance problem in the vector-valued setting we are interested

in the vector-valued invariant subspaces for the algebra H1
B . In the vector-valued

case, H2
H is a direct sum of H2 spaces and is essentially the only invariant subspace

of H1 that needs to be considered. In the case of H1
B , the invariant subspaces

for H1
B are of the form V � BH2

H with V ✓ H2
H  BH2

H and these may fail to

decompose as a direct sum of invariant subspaces contained in H2. Therefore, one

expects the scalar theory and vector-valued theory to be fundamentally di↵erent.

A first indication of this fact is given by [15, Theorem 5.3] and Theorem 5.2.1 in

Chapter 5.2 is an extension of this result.

In Chapter 3.2 we will prove a distance formula for H1
B . We will show that the

distance of an element of L1 from the weak⇤-closed ideal in H1
B of functions that

vanish at the n points z1, . . . , zn 2 D is related to the norm of the compression of

Mf to the cyclic subspaces of H1
B . This result is an extension of Nehari’s theorem

and related to Arveson’s distance formula for nest algebras [9].

To better understand these connections we need to look at the notions of re-

flexivity and hyperreflexivity for an operator algebra.

If M is a subspace of H, then we denote by PM the orthogonal projection from
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3.1 INVARIANT SUBSPACES AND REFLEXIVITY

H onto M. Since M is invariant for an operator A if and only if PMAPM = APM

we see that Lat(A) can be viewed as the set of projections P 2 B(H) such that

PAP = AP for all A 2 A. If Ã is the closure in the WOT of the algebra generated

by A and I, then Lat(Ã) = Lat(A). Therefore, we assume that our algebras are

unital and closed in the WOT.

The ideas above can be dualized. Given a lattice L of subspaces, equivalently

projections, the algebra Alg(L) is defined as the set of operators on H which leave

every element of L invariant. It is straightforward that A ✓ Alg(Lat(A)). An alge-

bra for which this last inclusion is an equality is called reflexive. In the case where

L is a chain the algebra Alg(L) is called a nest algebra and nest algebras are reflex-

ive. Nest algebras have a property that is stronger than reflexivity, nest algebras

are hyperreflexive [9]. An algebra A is reflexive if and only if k(I � P )TPk = 0

for all P 2 Lat(A) implies T 2 A.

If P 2 Lat(A), A 2 A and T 2 B(H), then

kT + Ak � k(I � P )(T + A)Pk = k(I � P )TPk . (3.20)

Hence,

kT +Ak = inf
A2A

kT + Ak � sup
P2Lat(A)

k(I � P )TPk . (3.21)

If the reverse inequality in (3.21) holds, even up to a constant, then A is called

hyperreflexive and this property implies that A is reflexive.

If L is the lattice in B(H2) of subspaces of the form �H2 where � is an inner

function, then the Alg(Lat(L)) = H1 and so H1 is reflexive. This latter fact

holds true for the algebras H1
B when viewed as a subalgebra of B(H2) and for the
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3.1 INVARIANT SUBSPACES AND REFLEXIVITY

algebra H1
� when viewed as operators on H2

�.

Proposition 3.1.5. Let H be a reproducing kernel Hilbert space. If A denotes the

multiplier algebra of H, then A is a reflexive operator algebra in B(H).

Proof. Suppose that T 2 B(H) and T (M) ✓ M for all M 2 L(A). The subspace

spanned by the kernel function kx is invariant for A⇤ and so T ⇤kx 2 span {kx}.
There exists a constant �(x) 2 C such that T ⇤kx = �(x)kx and consequently

T = M�.

In order to apply this last result we must know that H1
� is the multiplier

algebra of H2
� and that H1

B is the multiplier algebra of H2
B. This is established in

Proposition 4.1.3.

When H1 is viewed as a subalgebra of B(H2) it is well known that H1 is equal

to its own commutant. In fact, the commutant lifting approach to interpolation

depends on the fact that H1 = {S}0. The next few results show what we know

about the commutant of the algebras H1
B and H1

� .

If � : D ! D is an automorphism, then the composition operator C� : H2 ! H2

is defined by C�(f) = f � �. It is a consequence of Littlewood’s theorem that this

operator is bounded and an easy calculation,

⌦

f, C⇤
�kz

↵

= hC�f, kzi = f(�(z)) =
⌦

f, k�(z)

↵

, (3.22)

shows that C⇤
�kz = k�(z).

Given a Fuchsian group �, let us denote by Alg(S, �) the smallest subalgebra

of B(H2) that contains the shift S and the group of composition operators {C� :

� 2 �}.
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If h 2 H2, f 2 H1 and � 2 �, then

MfC�(h) = f(h � �) (3.23)

= (f � ��1�)(h � �) (3.24)

= (f � ��1h) � � (3.25)

= C�Mf���1(h). (3.26)

Hence, Mf���1 = C�1
� MfC�. This shows that the action of � on H1 is implemented

by a similarity. The fixed point space for this action is the algebra H1
� which is

the set of f 2 H1 such that MfC� = C�Mf for all � 2 �. The closure of the

algebra Alg(S, �) in the WOT would seem a natural way to define a cross product

of H1 by the group �. We have not explored this construction, nor does it seem

to appear in the literature, but we feel it would be of interest to do so.

Proposition 3.1.6. The commutant of Alg(S, �) in B(H2) is H1
� .

Proof. If T 2 Alg(S, �)0 , then TS = ST which forces T = Mf 2 H1. Since

MfC� = C�Mf , for all � 2 �, we get f 2 H1
� .

Proposition 3.1.7. The invariant subspaces of Alg(S, �) are of the form �H2,

where � is character automorphic.

Proof. If M is invariant for Alg(S, �), then M is shift invariant. It follows that

M = �H2 for some inner function �. Since M is invariant under C� we get that

(���)H2 = �H2. It follows that ��� = �(�)� where �(�) 2 T. If �1, �2 2 �, then

�(�1�2)� = � � (�1�2) (3.27)
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= (� � �1) � �2 (3.28)

= (�(�1)�) � �2 (3.29)

= �(�1)�(�2)�. (3.30)

Hence, � 2 �̂.

Proposition 3.1.8 implies that H1
B is equal to its own commutant when viewed

as the multiplier algebra of H2
B. The result also applies to H1

� viewed as a subal-

gebra of B(H2
�).

Proposition 3.1.8. Let M be a subspace of H2 such that 1 2 M and let A be

the multiplier algebra of this subspace. If [A] = M, then A0 = A, when A is

represented as multiplication operators in B(M).

Proof. Let T 2 B(M) such that T 2 A0 and set T (1) = h. Consider the action of

T ⇤ on the kernel function kx 2M. Let g 2 A and compute

hT ⇤kx, gi = hkx, TMg1i

= hkx, MgT (1)i (3.31)

= hkx, ghi (3.32)

= g(x)h(x) (3.33)

=
D

h(x)kx, g
E

(3.34)

and so T ⇤kx = h(x)kx. This forces h to be in the multiplier algebra and T = Mh 2
A.
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Besides the representation on H2
�, Forelli [20] showed that there is a natural

representation of H1
� on the space H2

� + N . The subspace H2
� + N is invariant

for H1
� . To see this pick h 2 H2

� + N and choose k 2 H2 such that E(k) = h. If

f 2 H2
0,� and g 2 H1

� , then

Z

fgh =

Z

fg�(k) =

Z

fgk = 0, (3.35)

Hence, H1
� (H2

� + N) ✓ H2
� + N . This shows that N is semi-invariant for H1

� and

so the compression of H1
� to N is a homomorphism of H1

� . Since H1
� is infinite-

dimensional and N is finite-dimensional we see that this homomorphism has a

non-trivial kernel. Hence, there exists a function f 2 H1
� such that Mf (N) ? N .

Let N be the closure in H2 of the functions f in H2 such that fN ⇢ H2. The

subspace N is invariant for Alg(S, �) which tells us that �H2 = N for a character

automorphic inner function �, by Proposition 3.1.7. This means that �N ✓ H1

with � character automorphic.

We point out that there is a more elementary way to obtain this last fact.

Let M denote the smallest shift invariant subspace of L2 that contains H2
� + N .

Clearly M = [H1(H2
� + N)]. By the Helson-Lowdenslager theorem the subspace

is either of the form �SL2 or of the form �H2 where � is unimodular. Suppose that

M = �SL2 and note that �S = 1, since 1 2M. If M = L2, then �(M) = L2
�.

A typical element of M can be approximated by sums of elements of the form fg

where f 2 H1 and g 2 H2
� + N . Note that �(fg) = �(f)g, which shows

L2
� = �(M) ✓ [{�(fg) : f 2 H1, g 2 H2

� + N}] (3.36)

51



3.2 DISTANCE FORMULAE

= [{�(f)g : f 2 H1, g 2 H2
� + N}] (3.37)

= [{fg : f 2 H1
� + N, g 2 H2

� + N}] (3.38)

✓ H2
� + N + N.N, (3.39)

which is impossible since N is finite dimensional and H1
0,� is not. Hence, M =  H2

for a unimodular character automorphic function  . Since 1 2 H2
� + N ✓  H2 we

get 1 =  � for an inner function � and so  = � is inner. Hence, �(H2
� +N) ✓ H2.

This ability to multiply N into H1 with a character automorphic inner function

is critical to our proof of Theorem 3.2.10 and so we record this fact.

Proposition 3.1.9 (Forelli). There exists a character automorphic inner function

� such that �N ✓ H1.

3.2 Distance formulae

LetA be a unital, weak⇤-closed subalgebra of H1. Let z1, . . . , zn 2 D, w1, . . . , wn 2
C and assume that A contains a function f such that f(zj) = wj. We saw in

Chapter 1.1 how the distance of an element in the algebra A from the weak⇤-

closed ideal I of functions in A which vanish at the n points z1, . . . , zn is related

to the Nevanlinna-Pick problem.

The following lemma, the proof of which follows from a standard weak⇤-compactness

argument, shows that when dealing with weak⇤-closed subalgebras of H1, the ex-

istence of a solution to the interpolation problem is equivalent to the existence of

an interpolating function and the condition kf + Ik  1.
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Lemma 3.2.1. Let f 2 A with f(zj) = wj. A solution to the interpolation problem

exists if and only if kf + Ik  1.

In this section we will prove two distance formulae. The first formula relates the

distance of an element of L1 to the ideal I in an algebra of the formA :=
T

j2J H1
B

j

where Bj is an inner function and J is a set. One special case of this is the algebra

H1
� and so we have our first distance formula for the norm on H1

� /I. Our second

result uses the additional structure present in the case of H1
� to derive a formula

for the distance of an element in L1� from the ideal I in H1
� . This improved result

will be used in Chapter 4.1 to generalize Abrahamse’s theorem.

We identify L1 as the dual of L1 and refer to L1 as the predual of L1. Propo-

sition 2.3.1 gives the corresponding results for the Lp
� spaces.

We will now introduce a property which we call predual factorization. If we

examine closely the essential aspects of Sarason’s generalized interpolation [37] and

Abrahamse’s theorem [1] we see that this notion is natural. It allows us to capture

the essential aspects of Sarason’s idea. We say a subspace X ✓ H1 has predual

factorization if and only if there exists a (not necessarily closed) subspace S ✓ L1

with the following two properties.

1. The closure of S in the L1 norm is X?

2. For each f 2 S, there exists an inner function � such that �f 2 H1.

A simple consequence of Riesz factorization is that any function f 2 S can be

written as f =  u2 where  is unimodular, u is outer and |f |1/2 = |u|.

Proposition 3.2.2. Suppose that {Xj : j 2 J} is a set of weak⇤-closed subspaces

53



3.2 DISTANCE FORMULAE

of H1. If for each j 2 J , Xj has predual factorization, then X :=
T

j2J Xj has

predual factorization.

Proof. We note that

X? =

 

\

j2J

Xj

!

?
=

"

[

j2J

{(Xj)? : j 2 J}
#

1

. (3.40)

Set S = span{(Xj)? : j 2 J}. Given fj 2 Xj there exists an inner function �j

such that �jfj 2 H1. If f =
Pm

i=1 cifj
i

2 S, then �f 2 H1 where � = �j1 · · ·�j
m

.

Hence, S has predual factorization.

Proposition 3.2.3. If X is a subspace of L1 such that BH1 ✓ X , then X has

predual factorization.

Proof. We have X? ✓ (BH1)? = BH1
0 . The inner function B multiplies X? into

H1.

Corollary 3.2.4. If {Bj : j 2 J} is a set of inner functions, and Xj ◆ BjH
1,

then X =
T

j2J Xj has predual factorization.

Corollary 3.2.5. If {Bj : j 2 J} is a set of inner functions, then A =
T

j2J H1
B

j

has predual factorization.

Recall that a function u 2 H2 is called outer if [H1u] = H2. Given an outer

function u 2 H2 we define Mu = [Au], Ku to be the span of the kernel functions

for Mu at the points z1, . . . , zn and Nu = Mu  Ku = {f 2Mu : f(zj) = 0, j =

1, . . . , n}. Given a subspace M ✓ L2 we denote by PM the orthogonal projection

of L2 onto M.
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Lemma 3.2.6. let z1, . . . , zn be n distinct points in D and suppose A has predual

factorization. If I is the ideal of functions in A such that f(zj) = 0 for j =

1, . . . , n, then I has predual factorization.

Proof. Let I? be the preannihilator of I in L1. Since A has predual factorization

there exists S ✓ A? such that

1. The closure of S in the L1 norm is A?

2. For each f 2 S, there exists an inner function � such that �f 2 H1.

Note that I? = A? + span{kz
j

: 1  j  n}, where kz is the Szegö kernel at the

point z. If E is the Blaschke product for the points z1, . . . , zn, then Ekz
j

2 H1

for j = 1, . . . , n. The space S̃ = S + span{kz
j

: 1  j  n} is dense in I?. Given

h + v 2 S̃, with h 2 A? and v 2 span{kz
j

: 1  j  n}, there exists an inner

function � such that �h 2 H1 and so E�(h + v) 2 H1 and E� is inner. Hence I?
has predual factorization.

Lemma 3.2.7. Let I, A be as in Lemma 3.2.6. If u is an outer function, then

[Iu] = Nu.

Proof. Since every function in I vanishes at z1, . . . , zn, [Iu] ✓ Nu. On the other

hand, given f 2 Nu we know that there exists fm 2 A such that kfmu� fk2 ! 0

and since u does not vanish at any point of the disk we see that fm(zj) ! 0 for

j = 1, . . . , n. By a construction similar to the one in Lemma 4.1.5 we see that there

exist functions ej 2 A such that ej(zi) = �i,j. Setting gm = fm �
Pn

i=1 fm(zi)ei we

see that gmu converges to f in H2 and gm 2 I. Hence, Nu ✓ [Iu] and our proof is

complete.
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We will now prove our distance formula.

Theorem 3.2.8. Let z1, . . . , zn be n distinct points in D, let A be a unital, weak⇤-

closed subalgebra of H1 with predual factorization and let I be the ideal of functions

in A such that f(zj) = 0 for j = 1, . . . , n. If f 2 L1, then

kf + Ik = sup
u
k(I � PN

u

)MfPM
u

k , (3.41)

where the supremum is taken over all outer functions u 2 H2.

Proof. We have,

kf + Ik = sup

⇢

�

�

�

�

Z

fg

�

�

�

�

: g 2 I?, kgk1  1

�

(3.42)

= sup

⇢

�

�

�

�

Z

fg

�

�

�

�

: g 2 S̃, kgk1  1

�

, (3.43)

where S̃ is a dense subspace of I? with the property that each function in S can

be multiplied into H1 by an inner function. Let g 2 S̃, and let � be inner with

the property that �g 2 H1 and factor �g as g1u where g1, u 2 H2, u is outer, and

kuk2 = kg1k2 = kgk1/2
1 . It follows that g = g2u where g2 2 L2 and u is outer with

kuk2 = kg2k2 = kgk1/2
1 .

Since g 2 I?, for all h 2 I we get

0 =

Z

gh =

Z

g2uh = hhu, g2i . (3.44)
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This shows g2 ? [Iu] = Nu. Hence,

�

�

�

�

Z

fg

�

�

�

�

= |hfu, g2i| (3.45)

= |hfPM
u

u, (I � PN
u

)g2i| (3.46)

 k(I � PN
u

)MfPM
u

k . (3.47)

Recall from our statements about reflexivity that the reverse inequality is always

true. Our proof is complete.

We point out that the proof of Theorem 3.2.8 holds in the case n = 0 to give

the distance of an element in L1 from the algebra A =
T

j2J H1
B

j

. This result can

be interpreted as a Nehari theorem for the algebra A.

Theorem 3.2.9. If f 2 L1, then kf +Ak = supu k(I � PM
u

)MfPM
u

k.

A more refined version of this formula can be obtained for the distance of

f 2 L1� from the ideal I ✓ H1
� . The preannihilator of H1

� in L1
� is H1

0,� + N . Let

g 2 H1
0,� + N . We have seen in Proposition 3.1.9 that there is an inner function �

such that �N ✓ H1 and so �g 2 H1. Hence, |g| = |u|2 for some outer function u.

The function g is in L1� and so u 2 H2
� for some � 2 �̂ by Proposition 2.2.1.

Theorem 3.2.10. Let f 2 L1� . The distance of f from I is given by

kf + Ik = sup k(I � PN
u

)MfPM
u

k , (3.48)

where the supremum is over all characters � 2 �̂ and all outer functions u in H2
�.
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Here I denotes the identity in B(L2) and the orthogonal projections are in

B(L2).

Proof. Let k�
z
j

be the kernel function at the point zj for the space H2
�. By duality

kf + Ik = sup

�

�

�

�

Z

fg

�

�

�

�

(3.49)

where g 2 H1
�,0+N +span{k�

z1
, . . . , k�

z
n

}, kgk1  1. If we let B denote the Blaschke

whose zero set is the union of the orbits �(z1), . . . , �(zn), then Bk�
z
j

2 H2. It follows

that �Bg 2 H1 and so |g| = |u|2, where u 2 H2
� is outer and � 2 �̂. Rewriting the

expression in (3.49) we get

kf + Ik = sup

�

�

�

�

Z

fuv

�

�

�

�

(3.50)

where u is an outer function in H2
� and vu = g. Since g 2 I? we see that

R

gh = 0

for all h 2 I. Therefore, hhu, vi = 0 and so v 2 L2  [Iu] = L2  Nu. Hence,

�

�

�

�

Z

fuv

�

�

�

�

= |hfu, vi|  k(I � PN
u

)MfPM
u

k . (3.51)

The reverse inequality is straightforward since Mu is an invariant subspace for

the algebra H1
� .
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Chapter 4

Interpolation Results

4.1 Nevanlinna-Pick interpolation for H1
B

In this section we will prove the interpolation theorem for H1
B . This result is a

consequence of the following, more general, theorem.

Theorem 4.1.1. Let A be a weak⇤-closed, unital subalgebra of H1 which has

predual factorization. Let z1, . . . , zn 2 D and w1, . . . , wn 2 C. There exists a

function f 2 A such that f(zj) = wj, j = 1, . . . , n with kfk1  1 if and only if

for all outer functions u 2 H2, [(1� wiwj)Ku(zi, zj)]ni,j=1 � 0.

Here Ku denotes the kernel function of the space [Au]. The proof of this result

will follow from the distance formula obtained in Theorem 3.2.8.

We first need to establish the fact that the multiplier algebra of H =
T

j2J H2
B

j

is A =
T

j2J H1
B

j

and that the supremum norm agrees with the multiplier norm.

Proposition 4.1.2. Let A be a unital, weak⇤-closed subalgebra of H1 and let

u 2 H2 be an outer function. If M := [Au], then A ✓ mult(M).
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Proof. It is straightforward that A(M) ✓M. Since u does not vanish on the disk

we see that none of the kernel functions in M are the zero function. If Mf denotes

the multiplication operator on M induced by f , then kfkmult = kMfkB(M) �
kfk1. On the other hand if h 2M ✓ L2, then

kMfhk2 =

Z

|fh|2  kfk2
1 khk2 , (4.1)

which proves kfkmult  kfk1.

Proposition 4.1.3. Let {Bj : j 2 J} be a set of inner functions. The multiplier

algebra mult(
T

j2J H2
B

j

) =
T

j2J H1
B

j

.

Proof. Let us denote M :=
T

j2J H2
B

j

. Let f 2 mult(M). Since 1 2M none of

the kernel functions in M can be zero. This shows that any f 2 mult(M) must be

bounded. If f 2 mult(M), then f 2M, since 1 2M. Hence, f = �j + Bjkj for

j 2 J , kj 2 H2. Since f is bounded so is kj and we have shown that f 2 Tj2J H1
B

j

.

On the other hand any function f 2 Tj2J H1
B

j

multiplies M into itself. It remains

to be seen that kfkmult  kfk1. This follows from

kMfhk2 =

Z

|fh|2  kfk2
1 khk2 , (4.2)

where h 2M ✓ L2.

If f 2 A, then Mf leaves Mu invariant and

kf + Ik = sup
u
k(I � PN

u

)MfPM
u

k (4.3)

= sup
u
k(I � PM

u

+ PK
u

)MfPM
u

k (4.4)
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= sup
u
kPK

u

MfPM
u

k (4.5)

= sup
u

�

�M⇤
f PK

u

�

� . (4.6)

If ku
z denotes the kernel function for Mu at z, then a spanning set for Ku is

given by {ku
z1

, . . . , ku
z
n

}. Standard results about multiplier algebras of reproducing

kernel Hilbert spaces tell us that the norm of M⇤
f PK

u

is at most 1 if and only

if [(1 � wiwj)Ku(zi, zj)]ni,j=1 � 0. Combining this fact with equation (4.3)–(4.6)

proves the interpolation theorem, once we know that there exists at least one

interpolating function f 2 A such that f(zj) = wj.

The purpose of the next two lemmas is to show that if the matrix

[(1� wiwj)K
u(zi, zj)]

n
i,j=1 (4.7)

is positive for just one outer function u 2 H2, then there exists an interpolating

function for the algebra A.

Lemma 4.1.4. Let H be a Hilbert space, let v1, . . . , vn 2 H and let W1, . . . ,Wn,

Wn+1 2MN . Suppose that vn+1 2 H and vn+1 =
Pn

i=1 ↵ivi. If the matrix

Q =
⇥

(I �WiW
⇤
j ) hvj, vii

⇤n+1

i,j=1
(4.8)

is positive and 1  i  n, then either ↵i = 0 or Wi = Wn+1.

Proof. Let Wk =
h

w
(k)
i,j

iN

i,j=1
and consider the matrix, Qk that we get by com-

pressing to the (k, k) entry of each block in Q. The (i, j)-th entry of Qk is
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⇣

1�Pn+1
l=1 w

(i)
k,lw

(j)
k,l

⌘

hvj, vii. Let �1, . . . ,�n+1 2 C and note that

n+1
X

i,j=1

 

1�
n+1
X

l=1

w
(i)
k,lw

(j)
k,l

!

hvj, vii�i�j � 0. (4.9)

By setting �j = ↵j for j = 1, . . . , n and �n+1 = �1 we get that

n
X

i,j=1

 

1�
n+1
X

l=1

w
(i)
k,lw

(j)
k,l

!

hvj, vii↵i↵j �
n
X

i=1

 

1�
n+1
X

l=1

w
(i)
k,lw

(n+1)
k,l

!

hvn+1, vii↵i

(4.10)

�
n
X

j=1

 

1�
n+1
X

l=1

w
(n+1)
k,l w

(j)
k,l

!

hvj, vn+1i↵j +

 

1�
n+1
X

l=1

�

�

�

w
(n+1)
k,l

�

�

�

2
!

kvn+1k2 � 0

(4.11)

This simplifies to

�

�

�

�

�

vn+1 �
n
X

i=1

↵ivi

�

�

�

�

�

2

�
n+1
X

l=1

�

�

�

�

�

n
X

i=1

(w(n+1)
k,l � w

(i)
k,l)↵ivi

�

�

�

�

�

2

� 0 (4.12)

which gives
Pn

i=1(w
(n+1)
k,l � w

(i)
k,l)↵ivi = 0 for 1  k, l  n. If ↵i 6= 0, then by the

linear independence of v1, . . . , vn we get w
(n+1)
k,l = w

(i)
k,l and so Wn+1 = Wi.

Lemma 4.1.5. Let A be a unital, weak⇤-closed subalgebra of H1. Let u be an

outer function and let M = [Au]. Let K be the kernel function of M, z1, . . . , zn

be n points in the disk and W1, . . . ,Wn 2 Mk. If
⇥

(1�WiW
⇤
j )K(zi, zj)

⇤n

i,j=1
� 0,

then there exists F 2Mk(A) such that F (zj) = Wj.

Proof. We may assume after reordering the points that {kz1 , . . . .kz
m

} is basis of

span{kz
j

: 1  j  n}, with m  n. There exists f 2 M such that u(zj)f(zj)

62



4.1 NEVANLINNA-PICK INTERPOLATION FOR H1
B

are distinct for for 1  j  m. If this is not the case, then u(zj)kz
j

� u(zi)kz
i

= 0

is a non-trivial linear combination of kz
i

and kz
j

, since u(zi), u(zj) 6= 0. From the

definition of M we conclude that there exists g 2 A such that kug � fk is small

enough that g(zj) are distinct for 1  j  m. By setting

ej =
m
Y

r=1,r 6=j

g � g(zr)

g(zj)� g(zr)
2 A, (4.13)

we see that ei(zj) = �i,j, for 1  i, j  m. Let h =
Pm

i=1 wiei and note that for

1  j  m, h(zj) = wj. To complete the proof we need to show that h(zj) = wj

for j > m.

Let j > m and suppose that kz
j

=
Pm

l=1 ↵lkz
l

. We have seen that the matrix

positivity condition implies that either wj = wl or ↵l = 0 for 1  l  m. Hence,

h(zj) =
m
X

i=1

wiei(zj) (4.14)

=
m
X

i=1

wiu(zj)
�1(uei)(zj) (4.15)

=
m
X

i=1

wiu(zj)
�1

 

m
X

l=1

↵l(uei)(zl)

!

(4.16)

=
m
X

i=1

wiu(zj)
�1↵iu(zi) (4.17)

= u(zj)
�1

m
X

i=1

wi↵iu(zi) (4.18)

= wju(zj)
�1

m
X

i=1

↵iu(zi) (4.19)

= wju(zj)
�1u(zj) = wj. (4.20)

63



4.1 NEVANLINNA-PICK INTERPOLATION FOR H1
B

The matrix case follows easily.

With this fact in place, we have completed the proof of our interpolation the-

orem. While Theorem 4.1.1 applies to a fairly broad class of algebras, we do not

in general have a way to describe the spaces Mu = [Au]. At this point we see the

value of being able to classify invariant subspaces. After all, the cyclic subspace

[Au] is invariant for the algebra A. In the case of the algebra H1
B we can describe

Mu quite explicitly.

Proposition 4.1.6. Let B be an inner function and u an outer function. The

cyclic subspace [H1
B u] = W �BH2, where W is one-dimensional.

Proof. If u = v � Bw, then [H1
B u] = [v] � BH2. Note that v is non-zero, since

the function u is outer and B is inner. In fact, v and B cannot share a common

inner factor. This follows from the fact that gcd(v, B) divides u and u is outer.

The inclusion [H1
B u] ✓ [v]�BH2 is straightforward. Conversely, let

f = v �Bh 2 ([v]�BH2) [Au]. (4.21)

Since f ? [H1
B u] we see that 0 = hv + Bh, Bgui = hh, gui for all g 2 H1. Hence,

h ? [H1u] = H2 which yields h = 0. Now,

0 = hv, ui = hv, v + Bwi = hv, vi = kvk2 . (4.22)

which implies v = 0.

Let v 2 H2 BH2 with kvk2 = 1, let H2
v := [v]�BH2 and let Kv be the kernel
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function for the subspace H2
v . We have

Kv(z, w) = v(z)v(w) +
B(z)B(w)

1� zw
. (4.23)

Hence, for the algebra H1
B we have an interpolation condition where the kernels are

indexed by the family of one-dimensional subspaces of H2  BH2. If B is finite,

say with m zeroes counting multiplicity, then the one-dimensional subspaces of

H2 BH2 are parameterized by unit vectors in H2 BH2, where we identify two

vectors that di↵er only by a unimodular scalar factor. Hence, there is a natural

identification of these spaces with the complex projective m-sphere Pm(C). In the

case B = z2 we recover [15, Theorem 1.1].

Corollary 4.1.7 ([15, Theorem 1.1]). Let z1, . . . , zn 2 D and w1, . . . , wn 2 C. For

↵, � 2 C with |↵|2 + |�|2 = 1, let H2
↵,� = [↵ + �z] � z2H2. Let K↵,� denote the

reproducing kernel for the space H2
↵,�. There exists a function f 2 H1

1 such that

kfk1  1 and f(zj) = wj if and only if

⇥

(1� wiwj)K
↵,�(zi, zj)

⇤n

i,j=1
� 0 (4.24)

for all ↵, � as above and ↵ 6= 0.

Proof. This result follows immediately from the fact that the one-dimensional sub-

spaces of H2  z2H2 are of the form [↵ + �z] with |↵|2 + |�|2 = 1. The condition

that ↵ 6= 0 is a consequence of the fact that the cyclic subspace [H1
1 u] contains

the outer function u and therefore not all functions in [↵ + �z] can vanish at the

origin.
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4.2 Interpolation in H1
�

To begin this section we prove a Nevanlinna-Pick interpolation theorem for the

space H1
� . This result is a generalization of Abrahamse’s theorem. Our group �

is Fuchsian and Abrahamse’s theorem is the special case where the group � is the

group of deck transformations of a multiply connected region R.

The result is a consequence of the distance formula in Theorem 3.2.10. The

proof of the interpolation theorem for H1
� follows from the distance formula just

as the Theorem 4.1.1 followed from Theorem 3.2.8.

Theorem 4.2.1 (Nevanlinna-Pick interpolation in H1
� ). Let � be a Fuchsian

group such that the defect space N is finite dimensional. Let z1, . . . , zn 2 D and

w1, . . . , wn 2 C. There exists a function f 2 H1
� with kfk1  1 such that

f(zj) = wj if and only if

[(1� wiwj)K
u(zi, zj)]

n
i,j=1 � 0 (4.25)

for all � 2 �̂ and all outer functions u 2 H2
�, where Ku is the kernel function of

[H1
� u].

When the group � is the group of deck transformations of a multiply connected

region the result of Abrahamse and Douglas [2], which in turn depends on the

projection constructed by Forelli in [20], shows that the subspace [H1
� u] = H2

�,

whenever u 2 H2
� is outer. In this case, the matrices are really indexed by the

elements of �̂. We now know that this result is true for Fuchsian groups with finite-

dimensional defect space N . However, the answer to the more general invariant

66



4.2 INTERPOLATION IN H1
�

subspace theorem is still open.

Question Is every subspace M of H2
� that is invariant for H1

� of the form �H2
�

for some � 2 �̂ and some character automorphic inner function �?

We will now take a di↵erent approach to the study of the interpolation prob-

lem for H1
� . The approach that we describe works only for amenable groups. The

original goal of this was to see whether a proof of the interpolation theorem for

the annulus A could be given that did not depend on duality arguments or func-

tion theory. Perhaps this would cast more light on the interpolation problem for

H1(A). Ultimately, this proved not to work. Nonetheless, a couple of interest-

ing examples have emerged from this e↵ort. It seems worthwhile to look at what

happens to the interpolation problem in the spaces H1
� , when � is an amenable

group. The term amenable means that there exists an invariant state on `1(�).

The focus of this section is examples. So far, we have assumed for the group

� that H1
� is non-trivial. We are now more interested in what structure can be

deduced about the algebra H1
� from our knowledge about the group �. One of

our examples will be the group of deck transformations associated with a covering

of an annulus by the disk. Another example will be isomorphic to the free product

of the group Z2 with itself. This latter group has fixed points and cannot be

the group of deck transformations for a Riemann surface covering map. A third

example is provided by the cyclic subspace generated by a rotation of the disk

through an angle
2⇡

m
, where m 2 N. These three examples are “prototypes” for

an amenable Fuchsian group. By this we mean that any amenable Fuchsian group

� is isomorphic to one of the examples we are about to describe [30].

The simplest example of an amenable Fuchsian group is the one generated by
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the automorphism ⇢(z) = e2⇡i/Nz. We will denote this group �(0) and note that

�(0) is isomorphic to ZN . The space H1
�(0) consists of elements in H1 of the form

P1
j=0 ajz

jN . When viewed as a subalgebra of the multiplication operators on H2,

H1
�(0) is the weak⇤-closed algebra generated by SN , where S is the unilateral shift.

To get our second example we consider a covering of the annulus by the disk.

Let A be the annulus with inner radius r and outer radius R. The strip S := {z :

0 < <(z) < ⇡} is easily seen to be a covering space for the annulus. The covering

map is given by E(z) = exp
⇣ z

⇡
log
⇣ r

R

⌘⌘

. To see that the disk and the strip are

conformally equivalent we describe a sequence of maps. The function z 7! 1 + z

1� z

maps the disk onto the right half-plane <(z) > 0. Multiplication by i maps the

right half-plane to the upper half-plane and the principal branch of the logarithm

log maps the upper half-plane onto the strip {z : 0 < =(z) < ⇡}. Multiplication

by �i maps this strip onto S := {z : 0 < <(z) < ⇡}. Let q denote the composition

of the maps just described,

q(z) = �i log

✓

i
1 + z

1� z

◆

. (4.26)

The function E : S ! A is surjective. Let c =
2⇡2i

log(R)� log(r)
and let ⌧ : S ! S

be defined by ⌧(z) = z + c. It is easy to see that E � ⌧ = E and that no other

biholomorphic map of S onto itself has this property except an integer power of

⌧ . Thus, ⌧ is the generator of the group of deck transformations. The map q is

biholomorphic and so we see that p = E �q is a covering map of the disk onto A. If

� is the automorphism of the disk that generates the group of deck transformations,

then �(n) = q�1 � ⌧ (n) � q for all n 2 Z. It is not hard to check that �(z) =
z � a

1� az
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with a 2 (0, 1). In this case we obtain an infinite cyclic group, which we denote

�(1), generated by �(z) =
z � a

1� az
.

The third example is generated by �(z) = �z and �(z) =
a� z

1� az
with a 2

(0, 1). Denote by �(2) the group generated by � and �. Every element of �(2) can

be identified with a word in � and �. Since � and � have order 2, the elements of

�(2) are words in � and � with the property that every word is an alternating string

of �’s and �’s. Hence, there are precisely two words of each length, distinguished

by the “letter” they begin with. Set ↵ = �� and note ↵(z) =
z � a

1� az
and so

�(2) contains �(1). A word in �(2) is of the form ↵m or ↵m� where m 2 Z. Since

�(0) = 0 we see that ↵m(0) = ↵m�(0). If ↵m(0) = 0, then Lemma 4.2.3 shows

m = 0 and so ↵m is not the identity map for m 6= 0. It follows that ↵m� is also

not the identity map for m 6= 0. We have shown that �(2) ⇠= Z2 ⇤ Z2, the free

product of Z2 with itself, which is an amenable group. In fact, this is the only

non-abelian free product that is an amenable group. Both these statements are

well known. However, we lack a reference and so we provide a short proof of the

fact that Z2 ⇤ Z2 is amenable.

Proposition 4.2.2. The free product G = Z2 ⇤ Z2 is amenable.

Proof. Set ↵ = �� and note that any word in G can be expressed in the form ↵k

or �↵k, where k 2 Z. The cyclic group H = h�i is an abelian, hence amenable,

subgroup of G. Since � has order 2, the subgroup H has index 2 in G. Hence, H

is normal and the quotient G/H is of order 2. Since the quotient is amenable and

H is amenable, it follows from a “2 out of 3” principle [32, Proposition 0.16] that

G is amenable.
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One of the ways in which our examples di↵er from deck transformation groups

is the presence of fixed points and torsion.

In the simple cases that we deal with we will be able to reverse our point of

view. Instead of assuming that H1
� is non-trivial, we will explicitly show that

the spaces H1
� are non-trivial. These calculation will involve showing that the

Blaschke product for the orbit �(0) converges and computing the corresponding

character. The space H1
�(0) is clearly non-trivial. If we use the fact that �(1) is a

group of deck transformations and identify H1
�(1) with H1(A), then we know that

H1
�(1) is non-trivial. However, we will provide a direct proof of the non-triviality

of H1
�(1) . It is not immediately clear that H1

�(2) is non-trivial. In fact, the elements

of H1
�(2) are exactly the functions in H1

�(1) that satisfy f(z) = f(�(z)) = f(�z).

We will call such a function even. The fact that H1
�(2) is non-trivial will also follow

from our proof that H1
�(1) is non-trivial.

Lemma 4.2.3. Let

�(z) =
z � a

1� az
, (4.27)

where a 2 (�1, 1) and set

an =
(1 + a)n � (1� a)n

(1 + a)n + (1� a)n
, n � 1. (4.28)

We have,

�(n)(z) =
z � an

1� anz
, (4.29)

and

�(�n)(z) =
z + an

1 + anz
, (4.30)
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for n � 1.

Proof. Note that �(0) = �a = �a1. Now suppose that �(n)(0) = �an and consider

�(n+1)(0) =
�(n)(0)� a

1� a�(n)(0)
(4.31)

=

(1� a)n � (1 + a)n

(1� a)n + (1 + a)n
� a

1� a
(1� a)n � (1 + a)n

(1� a)n + (1 + a)n

(4.32)

=
(1� a)n � (1 + a)n � a(1� a)n � a(1 + a)n

(1� a)n + (1 + a)n � a(1� a)n + a(1 + a)n
(4.33)

=
(1� a)(1� a)n � (1 + a)(1 + a)n

(1� a)(1� a)n + (1 + a)(1 + a)n
(4.34)

= �an+1. (4.35)

Now,

�(�1)(z) =
z + a

1 + az
=

z � (�a)

1� (�a)z
(4.36)

and so

�(�n)(0) =
(1� (�a))n � (1� a)n

(1� (�a))n + (1� a)n
(4.37)

=
(1 + a)n � (1� a)n

(1 + a)n + (1� a)n
(4.38)

= an. (4.39)

For an automorphism �(z) = �
a� z

1� az
, a = �(�1)(0) and � =

�(0)

��1(0)
. If

�(n)(z) = �n
�(�n)(0)� z

1� �(�n)(0)z
, (4.40)
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then �n =
�an

an

= �1 and �(�n)(0) = an. So �(n)(z) =
z � an

1� anz
for n � 1 and on

computing the inverse we get �(�n)(z) =
z + an

1 + anz
for n � 1.

Lemma 4.2.4. The Blaschke sum
P

�2�(1)

(1� |�(0)|) converges.

Proof. We have that the elements of �(1) are of the form �(n) where �(z) =
z � a

1� az

with a 2 (0, 1) and n 2 Z. From the previous lemma we have

1� an =
2(1� a)n

(1 + a)n + (1� a)n
 2

✓

1� a

1 + a

◆n

. (4.41)

The latter series is geometric and so the sum above converges.

One consequence of this result is that the Blaschke product for the orbit

�(1)(0) = {�(n)(0) : n 2 Z} = {0, an,�an : n � 1} (4.42)

is convergent and we will show that B � � = �B and B(�z) = �B(z). For n 2 Z,

let �n denote the simple Blaschke factor at �(n)(0). For n � 1, the simple Blaschke

factor at an = �(�n)(0) is given by

|an|
an

an � z

1� anz
= � z � an

1� anz
= ��(n)(z). (4.43)

The factor at �an = �(n)(0) can be computed similarly and is

|�an|
�an

�an � z

1 + anz
=

z + an

1 + anz
= �(�n)(z). (4.44)
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The factor at 0 is z. Our calculation shows that

�n =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�(�n) n � 1

z n = 0

��(�n) n  �1

. (4.45)

Let

BN :=
Y

|j|N

�j = (�1)N
Y

|j|N

�(j). (4.46)

Composing with � and multiplying by �(�N) we get,

�(�N)(BN � �) = �(�N)(�1)N
Y

|j|N

�(j+1) (4.47)

= ((�1)N
Y

|j|N

�(j))�(N+1) (4.48)

= BN�
(N+1). (4.49)

Hence, �(�N)(z)BN(�(z)) = �(n+1)(z)BN(z). Since an ! 1 as n !1 we get that

�(n)(z) ! �1 and �(�n)(z) ! 1 as n ! 1. Hence, on taking the limit in N we

get that B(�(z)) = �B(z).

For n 2 Z we have �(n)(�z) = ��(�n)(z). Hence, BN(�z) = (�1)2N+1BN(z) =

�BN(z) and B(�z) = �B(z).

Proposition 4.2.5. The algebra H1
�(2) is non-trivial.

Proof. Note that B2 is even and invariant under �.

The stabilizer subgroup �(2)
0 consists of the identity and the automorphism �.
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Hence, the Blaschke associated with the group �(2) is B2.

It follows from Corollary 2.2.9 that {B2n : n � 0} is an orthonormal basis for

H2
�(2) . Since B2 is inner we see that H1

�(2) is really the span of the powers of an inner

function. The interpolation theory for spaces generated by a single inner function

is quite simple as Theorem 4.2.8 shows. To prove Theorem 4.2.8 we require a few

preliminary results.

Lemma 4.2.6. If � is an inner function, then �(D) = D.

Proof. The operator of multiplication by � on H2 is isometric but not unitary.

By the Wold decomposition the spectrum of M� is the closed unit disk. Hence,

D = �(M�) = �(D).

Corollary 4.2.7. If � is an inner function and f 2 H1, then kfk1 = kf � �k1.

Proof. Since �(D) ✓ D, kf � �k1  kfk1. If z 2 D there exists �(zn) 2 �(D) such

that �(zn) ! z and so |f(z)| = limn!1 |f(�(zn))|  kf � �k1.

Proposition 4.2.8. Let � be an inner function such that �(0) = 0. Let H2(�) be

the closed span in H2 of {1,�,�2, . . .} and let H1 � � be the weak⇤-closure in H1

of {�n : n � 0}.

1. {�n : n � 0} is an orthonormal basis for H2(�).

2. The kernel function for H2(�) is K�(z, w) =
1

1� �(z)�(w)
.

3. f 2 H1(�) if and only if f 2 H2(�) \H1 if and only if f = g � � for some

g 2 H1 with kgk1 = kfk1.

4. The multiplier algebra of H2(�) is H1(�).
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5. The space H2(�) is a complete Nevanlinna-Pick space.

Proof.

1. Since the function � vanishes at the origin we have that �n is orthonor-

mal and since any element of H2(�) can be approximated by a finite linear

combination of the form a0 + a1�+ . . . an�
n we see that it is a basis.

2. We have

K�(z, w) =
1
X

n=0

�(z)n�(w)n =
1

1� �(z)�(w)
(4.50)

3. Let us denote by H1 �� the space of functions of the form {g �� : g 2 H1}
and by A the weak⇤-closed subalgebra of H1 spanned by {�n : n � 0}.
The algebra H1 � � is weak⇤ closed and contains A. If f 2 H2(�) \ H1,

then f =
P1

n=0 an�
n and so f = (

P1
n=0 anz

n) � �. The sequence an is

square summable and so g =
P1

n=0 anz
n 2 H2 with g � � = f . However, by

Lemma 4.2.7 we get that kgk1 = kfk1 and so g 2 H1. This shows that

H2(�) \H1 ✓ H1 � �. If f 2 H1 � �, then f = g � � and we can choose a

net of polynomials pt such that pt ! g in the weak⇤ topology. Composition

by � is weak⇤ continuous and so pt � � ! f in the weak⇤ topology and

A = H1 � �. Finally note, since H2(�) is closed in H2, that the space

H2(�) \ H1 is weak⇤ closed in H1 and contains �n for all n � 0. This

proves that A ✓ H2(�) \H1.

4. Since 1 2 H2(�) and multipliers must be bounded we see that mult(H2(�)) ✓
H2(�) \ H1 = H1(�). On the other hand, it is clear from H1(�) =
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H1 � � that H1(�) ✓ mult(H2(�)). The equality of norms follows as in

Proposition 4.1.2.

5. To see that K� is a complete Nevanlinna-Pick kernel let us consider n points

z1, . . . , zn in the disk and n matrices W1, . . . ,Wn in Mk. Suppose that the

matrix [(I�WiW
⇤
j )K�(zi, zj)]ni,j=1 � 0. There exists F 2Mk(H1) such that

kFk1  1 and F (�(zj)) = Wj by the classical Nevanlinna-Pick theorem.

The function F̃ = F � � has the same norm as F and is in H1(�). Also

F̃ (zj) = F (�(zj)) = Wj.

On the other hand, suppose that there is a function F in Mk(H1(�)) such

that F (zj) = Wj. We know that F = G � � for some G 2 Mk(H1) with

kGk1 = kFk1. Hence, G(�(zj)) = Wj and the Pick matrix is positive.

Although the proof of Proposition 4.2.8 is elementary we point out that the

representation obtained in part (2) implies the result in (5) by the work of Agler-

McCarthy, McCullough and Quiggin on complete Nevanlinna-Pick kernels [26, 3,

36]. The inner function � maps the disk D to the disk. Applying [3, Theorem 3.1]

on complete Nevanlinna-Pick kernels we see that the pull-back kernel K�(z, w) =

K(�(z),�(w)) is a complete Nevanlinna-Pick kernel for the reproducing kernel

Hilbert space associated with K�. Proposition 4.2.8 shows that the Hilbert space

associated with K� is H2(�).

Applying Theorem 4.2.8 to the space H2
�(2) we get

Proposition 4.2.9. Given n points z1, . . . , zn 2 D and n matrices W1, . . . ,Wn 2
Mk, there exists a function F 2Mk(H1

�(2)) with kFk1  1 and F (zj) = Wj if and

76



4.2 INTERPOLATION IN H1
�

only if

"

I �WiW
⇤
j

1�B(zi)2B(zj)2

#n

i,j=1

=
h

(I �WiW
⇤
j )K�(2)

(zi, zj)
in

i,j=1
� 0, (4.51)

where B is the Blaschke product for the orbit �(2)(0) = �(1)(0) and K�(2)
is the

kernel for the reproducing kernel Hilbert space H2
�(2).

So far we have not discussed the group �(0). However, note that H2
�(0) is also

of the form H2(�) for the inner function � = zN .

We have not as yet used the fact that � is amenable. Since the algebra H1 is

a dual space, we have available to us a weak⇤ averaging argument. This will allow

us to build a projection from H1 onto H1
� .

We first make some general comments about group actions on Banach spaces.

Let � be a group and X be a Banach space. By an action of � on X we mean a

homomorphism ✓ from � into the set of isometric isomorphisms of X. For � 2 �

we denote ✓(�) by � and the context will make clear whether we are referring to

the group element or the linear map. If X is a dual space then we define a weak⇤-

action to be an action ✓ of � on X with the additional property that � is weak⇤

continuous for all � 2 �. Given an action ✓ of � we define a dual action on X⇤ by

✓⇤(�) = (�⇤)�1. Similarly given a weak⇤-action on X⇤ we see that it arises from an

action on X. If � acts on X then we denote by X� the set of all x 2 X such that

�(x) = x for all � 2 �.

When the group � is amenable there is another projection from L1 onto L1� .

The following result is well known and we state it for completeness.
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Proposition 4.2.10. If � is an amenable group that acts on X, then the map �

defined by

�(f)(x) = m(f(�(x))) (4.52)

is a linear, contractive, idempotent map whose range is (X⇤)� and �(�⇤(f)) = �(f)

for all � 2 �.

We define a subspace Y of X to be �-invariant if �(y) 2 Y for all � 2 �. Note

that if Y is �-invariant, then the action of � on X restricts to an action on Y .

To see this we need only prove �|Y : Y ! Y is surjective and this follows from

Y = �(��1(Y )) ✓ �(Y ) ✓ Y .

Proposition 4.2.11. If � is an amenable group which acts on X and � is defined

as in Proposition 4.2.10, then we have the following:

1. If Y is a �-invariant subspace of X, then Y ? ✓ X⇤ is �-invariant and

�(Y ?) = (Y ?)�.

2. If Y is a �-invariant subspace of X⇤, then Y? is �-invariant.

3. If Y is a weak⇤ closed, �-invariant subspace of X⇤, then �(Y ) = Y�.

Proof.

1. Let f 2 Y ? and y 2 Y . We have, �⇤(f)(y) = f(�(y)) = 0 and so �⇤(f) 2 Y ?.

By definition �(f)(y) = m(f(�(y)) = 0 and so �(f) 2 Y ?.

2. Let f 2 Y and y 2 Y?. We have f(�(y)) = �⇤(f)(y) = 0 and so �(y) 2 Y?.

3. Since Y is weak⇤ closed we have that Y = (Y?)?. As Y is �-invariant so is

Y? and we get �(Y ) = �((Y?)?) = ((Y?)?)� = Y�.
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The case we are interested in is X = L1. In this case, � is a unital positive

map and is therefore completely contractive.

If Y ✓ X⇤ is �-invariant, then so is its weak⇤-closure. To see this note that Y?

is �-invariant and so is Y
weak⇤

= (Y?)?. If we apply this last proposition to the

weak⇤-closed, �-invariant subalgebra H1 of L1 then we see that the projection

above maps H1 to H1
� .

In some ways this new projection is an improvement on the one in [20], since

it avoids the defect space N , preserves analytic structure and is completely con-

tractive. The following result shows, in the case of H1, that � is in some sense

the natural projection to consider.

Proposition 4.2.12. Let f 2 H1 and let the power series expansion of f � � be

given by
P1

n=0 an(�)zn. For each n, (an(�))�2� 2 `1(�). If bn = m(an(�)), then

�(f)(z) = m(f(�(z))) =
1
X

n=0

bnz
n. (4.53)

Proof. If kz is the Szegö kernel at z, then

�(f)(z) = h�(f), kzi = m(hf � �, kzi) = m(f(�(z))). (4.54)

We have, |an(�)| = |hf � �,�ni|  kfk1 and so for fixed n, (an(�))�2� 2 `1(�).

Now,

h�(f), zni = m(hf � �, zni) = m(an(�)) = bn. (4.55)

Hence, �(f)(z) =
P1

n=0 bnz
n.
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For the special of H1, there is a second averaging result that yields the same

projection.

Theorem 4.2.13. Let A ✓ B(H) and suppose that A = A0. If � is an amenable

group that acts on A, then there exists a linear, contractive, idempotent map � :

A! A�. If A is selfadjoint, then so is �.

Proof. Let A 2 A and f1, f2 2 H. Define a map sA : H⇥H! C by

sA(f1, f2) := m(h�(A)f1, f2i) (4.56)

The map sA is a bounded sesquilinear form on H with ksAk  kAk. Therefore,

there exists a unique operator �(A) 2 B(H) such that

h�(A)f1, f2i = m(h�(A)f1, f2i). (4.57)

Let A 2 A and note that

h�(A)Tf1, f2i = m(h�(A)Tf1, f2i) (4.58)

= m(hT�(A)f1, f2i) (4.59)

= m(h�(A)f1, T
⇤f2i) (4.60)

= h�(A)f1, T
⇤f2i (4.61)

= hT�(A)f1, f2i . (4.62)

Thus, �(A) 2 A0 = A. The remaining properties are easy to verify.

It is easy to check, in the case H = H2 and A = H1, that this agrees with the
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projection in Proposition 4.2.10.

Proposition 4.2.14. If �j is the projection from H1 onto H1
�(j) for j = 1, 2, then

�j(A(D)) is the set of constant functions.

Proof. Since �(k)(z) ! �1 as k !1 and 1 as k ! �1 we have that,

m(((�(k)(z))n)k2Z) =

8

>

>

<

>

>

:

0 if k is odd

1 if k is even

. (4.63)

Therefore, �j maps zn to a constant and so A(D) is also mapped to the constant

functions.

Corollary 4.2.15. There are no non-constant �(j)-invariant functions in A(D)

for j = 1, 2.

Proof. If f 2 A(D) and is fixed by �j, then f = �j(f) is constant.

Corollary 4.2.16. �j is not weak⇤ continuous.

Proof. This is a consequence of the fact that the trigonometric polynomials are

weak⇤ dense in H1 and that H1
�(j) contains non-constant functions.

The averaging argument is known to fail for regions of connectivity greater

than 2, see Barrett [12]. Since interpolation is an isometric theory the existence

of a contractive projection suggests, at least in the case of amenable groups, that

we could approach the problem of interpolation in H1
� through a related problem

on the disk. We will show that while this approach has the positive aspect of
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providing a fairly simple matrix positivity condition, the condition does not seem

refined enough to distinguish the interpolation theory of H1
�(1) and H1

�(2) .

Let K denote the Szegö kernel on the disk, i.e, the function K : D ⇥ D ! C

given by K(z, w) =
1

1� zw
. By a weak solution to the interpolation problem

we mean a matrix valued function F = [fi,j] 2 Mm(H1) such that kFk1  1,

F (�(zl)) = Wl for all l = 1, . . . , n and � 2 �. By a strong solution we mean

an F = [fi,j] 2 Mm(H1
� ) such that kFk1  1 and f(zl) = Wl for l = 1, . . . , n.

Clearly every strong solution is a weak solution. If we denote by W the set of weak

solutions, then it is clear, provided thatW 6= ;, thatW is a convex, weak⇤-compact

subset of the unit ball of Mk(H1).

Theorem 4.2.17. Let � be an amenable group. If F 2Mm(H1) is weak solution,

then �m(F ) is a strong solution.

Proof. We have k�m(F )k1  kFk1  1, �m(F ) 2Mm(H1
� ) and

�m(F )(zl) = (m(fi,j(↵(zl)))) = Wl. (4.64)

If Q = [qi,j]i,j2J is an infinite matrix, then we write Q � 0 to mean that every

finite square submatrix is positive. This is also known as formal positivity but we

will suppress the word formal. If Q is already finite, or is the matrix of positive

operator on a Hilbert space, then the two notions of positivity coincide. The

content of the next result is well known and a proof is provided for completeness.
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Proposition 4.2.18. Let {zj}j2J be a set of points in D and {Wj}j2J ✓ Mm.

There exists f 2 Mm(H1) such that kfk1  1 and f(zj) = Wj if and only if the

matrix
⇥

(Im �WiW
⇤
j )K(zi, zj)

⇤

i,j2J
� 0.

Proof. Let F denote the collection of finite subsets of J ordered by inclusion. By

Nevanlinna-Pick the positivity of the matrix is equivalent to the existence, for each

F 2 F , of a function fF 2 Mm(H1) such that fF (zj) = Wj for all j 2 F . Since

F is a directed set and the net {fF}F2F is contained in the weak⇤-compact set

Mm(H1) we know that is has a convergent subnet. Let the limit of this subnet be

f 2Mm(H1). Since weak⇤ limits preserve point values we get that f(zj) = Wj.

If we take the set of points in Proposition 4.2.18 to be the orbits of n points

z1, . . . , zn under the group �, then we obtain the following result.

Corollary 4.2.19. Let P (z, w) denote the infinite kernel matrix

P (z, w) := [K(↵(z), �(w))]↵,�2� . (4.65)

A weak solution exists if and only if
⇥

(Im �WiW
⇤
j )P (zi, zj)

⇤n

i,j=1
� 0

We know that this condition in Proposition 4.2.19 is equivalent to the condition

set forth by Abrahamse for the annulus A. It would be interesting to have a direct

proof that the matrix condition in Proposition 4.2.19 is equivalent to Abrahamse’s

condition that the matrices A�, � 2 T, are all positive semi-definite.
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Chapter 5

The C⇤-envelope of H1B /I.

5.1 Matrix-valued interpolation

There is a matrix-valued generalization of the Nevanlinna-Pick problem where the

scalars w1, . . . , wn 2 D are replaced by k ⇥ k matrices W1, . . . ,Wn in the unit ball

of Mk. The interpolating function F is now a bounded, matrix-valued, analytic

map of D into the unit ball of Mk. This is equivalent to the existence of F in the

unit ball of the Banach algebra Mk(H1) where the norm is given by

kFk := sup{kF (z)kM
k

: z 2 D}. (5.1)

The matrix-valued theorem for the disk is the same, aside from the obvious

changes.

Theorem 5.1.1 (matrix-valued Nevanlinna-Pick theorem). Let z1, . . . , zn 2 D and

let W1, . . . ,Wn 2 Mk. There exists a matrix-valued analytic function F : D ! Mk
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with kFk1  1 and F (zj) = Wj for j = 1, . . . , n if and only if



1�WiW
⇤
j

1� zizj

�n

i,j=1

� 0 (5.2)

Let � be an inner function and let ⇡ : H1/�H1 ! B(H2  �H2) be given by

⇡(f +�H1) = PMfP , where P is the orthogonal projection of H2 onto H2 �H2.

Sarason’s generalized interpolation result shows that the representation ⇡ is an

isometry and the special case where � is the Blaschke product for the n points

z1, . . . , zn yields the Nevanlinna-Pick theorem. The matrix-valued Nevanlinna-Pick

theorem is equivalent to the fact that ⇡ is completely isometric.

Shortly after Abrahamse’s original proof of the Nevanlinna-Pick theorem for

multiply connected domains, Ball [10] proved the matrix-valued generalization.

To deal with matrix-valued interpolation one needs to consider the appropriate

analogue of the character automorphic spaces. To fix ideas consider an m-holed

domain R. The fundamental group of this region is Fm and the characters of Fm

are just the one-dimensional unitary representations of Fm. For the Mp-valued

problem we need to consider unitary representations of the free group Fm on Cp.

Note that there is a natural action of the p-dimensional unitary group Up := U(Cp)

on the space of all p-dimensional unitary representations Hom(Fm, Cp). Given a

representation ⇡ 2 Hom(Fm, Cp) and a unitary U 2 Up, the action is given by

⇡(·) 7! U⇤⇡(·)U . Two unitary representations are identified if and only if they are

unitarily equivalent. Hence, the parameter space is the orbit space of all represen-

tations with respect to the natural action of the group Up. In the scalar-valued case

the unitary representations are one-dimensional and the unitary equivalence of rep-
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resentations is the same as equality of representations. Hence, in the scalar case the

parameter space is the dual of Fm, namely Tm. In the case of the annulus, the fun-

damental group is singly generated and any unitary representation is determined

by a single p⇥p unitary matrix. Any such representation is unitarily equivalent to

a representation on the p⇥p unitary, diagonal matrices. These representations de-

compose as a direct sum of one-dimensional representations. Therefore, in the case

of the annulus it is again enough to consider just the character space cF1 = bZ = T.

The Abrahamse-Ball theorem for the annulus reads as follows:

Theorem 5.1.2 (Abrahamse-Ball). Let z1, . . . , zn 2 A and W1, . . . ,Wn 2 Mp.

There exists a function F 2 Mp(H1(A)) such that kFk1  1 and F (zj) = Wj if

and only if the pn⇥ pn matrices

A� :=
⇥

(1�WiW
⇤
j )K�(zi, zj)

⇤n

i,j=1
� 0 (5.3)

for all � 2 T.

Here too we can interpret the matrix-valued theorem as a statement about a

completely isometric representation of H1(A)/I.

While the test condition in Pick’s theorem is a single np ⇥ np matrix, in the

Abrahamse-Ball theorem we need to check the positivity of an infinite family of

matrices indexed by the torus. Abrahamse conjectured that a dense subset of

the torus was required for the existence of a solution to the Pick problem. When

z, w are fixed, a theorem of Widom [40] shows that the kernel K�(z, w) varies

continuously with � and this latter density condition is equivalent to requiring

that all the matrices A� be positive. The work of Ball and Clancey [11] provided
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the first partial answer to this question. Their work showed, for the case of the

annulus A, that if U is an open subset of T, then there exists z1, z2 2 A and

w1, w2 2 D such that matrices A� � 0 for all � 2 T \ U , but there exists µ 2 U

such that Aµ is not positive.

Fedorov and Vinnikov [18] provided an understanding of how many parameters,

or conditions, are required to guarantee the existence of a solution. The result is

most easily understood for the case of an annulus A. Fedorov and Vinnikov showed

that once the points z1, . . . , zn 2 A are fixed there exist two points �, µ 2 T such

that the positivity of the matrices A� and Aµ guarantees the existence of a scalar-

valued solution. The parameters � and µ depend on the points z1, . . . , zn 2 D and

as the points z1, . . . , zn vary, the parameters vary with them, eventually exhausting

all points on the circle.

It would seem, from a first glance at Theorem 5.1.2, that the scalar and matrix-

valued theories for the annulus is the same, i.e., the points in the torus parametrize

the test conditions. The matrix-valued case is quite di↵erent. In the matrix-valued

case, even when the points z1, . . . , zn are fixed, all the matrix positivity (or at least

a dense subset) conditions are required to guarantee a solution to the interpolation

problem. This fact is proven in [27].

All the interpolation theorems that we have looked at have shown that a scalar-

valued solution exists if and only if every member of certain family of n⇥n matrices

is positive. In the case of the disk, there is one such matrix. In Abrahamse’s

theorem for A there is a family of them indexed by T. For H1
B , the indexing

set is the set of one-dimensional subspaces of H2  BH2. Every time we have

such a result, we have, in fact, produced an isometric representation of A/I.
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This representation may or may not be completely isometric, but when it is a

complete isometry we obtain the analogous matrix-valued interpolation theorem.

There could potentially be many Hilbert spaces on which A/I has an isometric,

or completely isometric, representation. Every isometric representation can be

viewed as a condition, albeit a very abstract condition, for the solution to the

scalar Nevanlinna-Pick problem.

For example, Abrahamse’s theorem tells us that there is an isometric represen-

tation of H1(A)/I on the direct sum of K�, where K� is the span of the kernel

functions for H2
�(A) at the points z1, . . . , zn 2 A. However, the result of Fedorov

and Vinnikov shows that we can do better since there is an isometric representa-

tion on K� � Kµ for some �, µ 2 T. In some sense Abrahamse’s theorem has an

infinite number of test conditions, where in fact just two would have su�ced.

In dealing with the matrix-valued problem McCullough and Paulsen [28] devel-

oped a way to decide if one has the best possible interpolation theorem. Loosely

speaking when we have the fewest test conditions, we have also found the minimal

completely isometric representation of the quotient A/I. Their approach involves

computing the C⇤-envelope of the quotient A/I. For the algebra H1(A)/I, the

C⇤-envelope is Mn(C(T)) which verifies that the Abrahamse-Ball theorem is really

the best one could hope for. This approach to the interpolation problem was used

in [15] to show that the scalar interpolation theorem for C + z2H1 is no longer

true in the matrix-valued setting.

In light of these results we would like to look at the the matrix-valued interpo-

lation problem for the algebra H1
B . In the next section we will begin by describing

the C⇤-envelope approach to the interpolation problem from [28]. After this we
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will outline the dimension jump phenomenon discovered by Solazzo [38]. Finally,

we will compute the C⇤-envelope of H1
B /I for some specific cases.

5.2 The C⇤-envelope of H1
B /I.

The C⇤-envelope of an operator algebra was defined by Arveson [8]. Loosely speak-

ing the C⇤-envelope of an operator algebra A, which is denoted C⇤
e (A), is the

smallest C⇤-algebra on which A has a completely isometric representation. Arve-

son’s work established the existence of the C⇤-envelope in the presence of what are

called boundary representations. The existence of the C⇤-envelope of an operator

algebra was established in full generality by Hamana, whose approach did not have

any relation to boundary representations.

Theorem 5.2.1 (Arveson-Hamana). Let A be an operator algebra. There exists

a C⇤-algebra, which is denoted C⇤
e (A), such that

1. There is a completely isometric representation � : A! C⇤
e (A).

2. Given a completely isometric representation � : A ! B, where B is a C⇤-

algebra and C⇤(�(A)) = B, there exists an onto ⇤-homomorphism ⇡ : B !
C⇤

e (A) such that ⇡ � � = �.

It is easy to see that the C⇤-envelope is essentially unique up to ⇤-isomorphism.

For a detailed description of the C⇤-envelope we refer the reader to [34].

For the algebra H1 the C⇤-envelope of H1/I is Mn. In [38] the algebras

H1
a1,...,a

m

:= {f 2 H1 : f(a1) = . . . = f(am)}, (5.4)
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were examined and the following result was obtained.

Theorem 5.2.2 (Sollazo [38]). Let a1 = 0, a2 = 1
2 and let z1 = 0, z2, z3 2 D with

z1, z2, z3 distinct. The C⇤-envelope of the algebra H1
B /I is M4.

Note that the quotient H1
B /I is a 3-idempotent algebra [33]. When we compare

this to the classical case we see there has been a jump in the dimension of the C⇤-

envelope from 3 to 4.

This dimension jump phenomenon has also been observed in [15, Theorem 5.3]

for the algebra C + z2H1. In this section we will show, given certain constraints

on the number of zeroes in the Blaschke product B, that a similar result is true

for the algebra H1
B /I. The first step in understanding the quotient H1

B /I is to

gain some knowledge about the structure of the ideal I.

We will consider only the case where B is a finite Blaschke product. To fix

notation we let ↵1, . . . ,↵p be the zeroes of B, we assume that these are distinct

and have multiplicity mj � 1 and we set m = m1+ . . .+mp. We arrange the points

z1, . . . , zn so that B(zj) = 0 for j = 1, . . . , r and B(zj) 6= 0 for j = r + 1, . . . , n.

Denote by E the Blaschke product for the points z1, . . . , zn. It is clear that I =

H1
B \EH1. Since B is a finite Blaschke product we see that W ✓ (H2 BH2)\H1

and I = E(W + BH1). This can also be seen directly from the fact that I is

invariant under H1
B .

Theorem 5.2.3. Let B be a finite Blaschke product and let I be the ideal of

functions in H1
B that vanish at the n points z1, . . . , zn. If r = 0, then

I = E([w] + BH1) (5.5)
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for some w 2 H1 \ (H2  BH2). If r � 1, then

I = lcm(B, E)H1 = E(W + BH1), (5.6)

where W is r-dimensional.

Proof. Let f 2 I and write f = �+ Bg 2 EH1, where g 2 H1. By evaluating at

z1, . . . , zn we obtain �+ B(zj)g(zj) = 0.

First, consider the case where r = 0. We can write f = �+B(
Pn

j=1 cjkz
j

)+BEh

for some choice of c1, . . . , cn 2 C and h 2 H1. Hence, �+B(
Pn

j=1 cjkz
j

) is 0 at the

points z1, . . . , zn and so �+ B(zi)
Pn

j=1 cjK(zi, zj) = 0 for i = 1, . . . , n. Rewriting

this as a linear system we get

2

6

6

6

6

4

B(z1)

. . .

B(zn)

3

7

7

7

7

5

2

6

6

6

6

4

K(z1, z1) · · · K(z1, zn)

...
...

K(zn, z1) · · · K(zn, zn)

3

7

7

7

7

5

2

6

6

6

6

4

c1

...

cn

3

7

7

7

7

5

= ��

2

6

6

6

6

4

1

...

1

3

7

7

7

7

5

. (5.7)

Since r = 0, this system has a unique solution and the constants c1, . . . , cn can be

taken to depend linearly on �. In this case W is one-dimensional.

If r � 1, then � = 0 and g(zj) = 0 for j = r + 1, . . . , n. Hence, f =

B�z
r+1 · · ·�z

n

h, f 2 lcm(B, E)H1 and I ✓ lcm(B, E)H1. The reverse inclu-

sion is straightforward. Let C = Bgcd(B, E) 2 H2. From

lcm(B, E)H2 = lcm(B, E)
�

[kz1 , . . . , kz
r

]� gcd(B, E)H2
�

(5.8)

= EBgcd(B, E)
�

[kz1 , . . . , kz
r

]� gcd(B, E)H2
�

(5.9)

= E(C[kz1 , . . . , kz
r

]�BH2), (5.10)
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we see that W is r-dimensional.

For an outer function u,

[Iu] = [lcm(B, E)H1u] = lcm(B, E)[H1u] = lcm(B, E)H2. (5.11)

We have seen that [H1
B u] = [v]�BH2 for some vector v and so

Ku = ([v]�BH2) lcm(B, E)H2 (5.12)

= [v]�B(H2  �z
r+1 · · ·�z

n

H2) (5.13)

= [v]�B[kz
r+1 , . . . , kz

n

]. (5.14)

The space Ku has dimension (n�r)+1. Note that this is also the dimension of the

quotient algebra H1
B /I. Our distance formula says that interpolation is possible

if and only if the compression of M⇤
f to [v] � B[kz

r+1 , . . . , kz
n

] is a contraction for

all v 2 H2  BH2.

In the case where one or more of the points z1, . . . , zn is a zero of B, i.e., when

r � 1, the distance of f 2 L1 from I is the distance of f from lcm(B, E)H1. This

is the case we will examine more closely. The objective will be to show that the

scalar-valued result in Theorem 4.1 is not the correct matrix-valued interpolation

result.

A basis for K = H2  lcm(B, E)H2 is given by the vectors

E := {ziki+1
↵

j

: 1  j  p, 0  i  mj � 1} [ {kz
r+1 , . . . , kz

n

}. (5.15)
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We begin by computing the matrix of M⇤
f |K with respect to the basis E . It is an

elementary calculation to show, for f 2 H2 and m � 0, that

f (m)(w)

m!
=
⌦

f, zmkm+1
w

↵

. (5.16)

Lemma 5.2.4. If f 2 H1, then

M⇤
f (zmkm+1

w ) =
m
X

j=0

1

j!
f (j)(w)zm�jkm�j+1

w . (5.17)

Proof. Let g 2 H2 and consider

⌦

g,M⇤
f zmkm+1

w

↵

=
⌦

fg, zmkm+1
w

↵

=
(fg)(m)(w)

m!
(5.18)

=
1

m!

m
X

j=0

✓

m

j

◆

f (j)(w)g(m�j)(w) (5.19)

=
1

m!

m
X

j=0

✓

m

j

◆

f (j)(w)(m� j)!
⌦

g, zm�jkm�j+1
w

↵

(5.20)

=

*

g,
m
X

j=0

1

j!
f (j)(w)zm�jkm�j+1

w

+

. (5.21)

From this, we see that

M⇤
f (zmkm+1

w ) =
m
X

j=0

1

j!
f (j)(w)zm�jkm�j+1

w . (5.22)

When f 2 H1
B , Lemma 5.2.4 shows us that the matrix of M⇤

f is diagonal with

respect to the basis E . The matrix of M⇤
f |K is given by

93



5.2 THE C⇤-ENVELOPE OF H1
B /I.

D⇤
f =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

f(↵1)Im1

. . .

f(↵p)Im
p

f(zr+1)

. . .

f(zn)

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

, (5.23)

If we partition the basis E as in (5.15), then the grammian matrix with respect to

this basis has the form

Q =

2

6

4

Q1 Q2

Q⇤
2 P

3

7

5

, (5.24)

where P is the Pick matrix for the points zr+1, . . . , zn. Since Q is the grammian

matrix of a linearly independent set it is invertible and positive. The matrix Q1

is m⇥m, positive and invertible, and the matrix Q2 is an m⇥ (n� r) matrix of

rank min{m, n� r}.
For a function f 2 H1, Sarason’s generalized interpolation shows that the

distance of f from the ideal �H1, i.e., kf + �H1k, is given by the norm of the

compression of Mf to H2 �H2. This distance formula is also valid in the matrix-

valued case. Let T be an operator on a finite-dimensional Hilbert space H, of

dimension n say, let E be a Hamel basis for H and let A be the matrix of T with

respect to E . The operator T is a contraction if and only if In�A⇤QA � 0, where

Q is the grammian for E . Using this last fact, if f 2 H1
B , then

�

�M⇤
f |K
�

�  1 () Q�DfQD⇤
f � 0 (5.25)
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() Q1/2(I �Q�1/2DfQD⇤
fQ

�1/2)Q1/2 � 0 (5.26)

() I �Q�1/2DfQD⇤
fQ

�1/2 � 0 (5.27)

() I � (Q�1/2DfQ
1/2)(Q�1/2DfQ

1/2)⇤ � 0. (5.28)

This induces a completely isometric embedding ⇢ of H1
B /I in Mm+n�r given by

⇢(f) = Q�1/2DfQ
1/2. (5.29)

The universal property of the C⇤-envelope tells us that C⇤
e (H1

B /I) is a quotient

of B := C⇤(⇢(H1
B /I)). Since we are dealing with a representation on a finite-

dimensional space we know that B is a direct sum of matrix algebras. In the event

that B = Mm+n�r we see that B = C⇤
e (H1

B /I). This follows from the fact that

Mm+n�r is simple.

Theorem 5.2.5. Let r � 1 and let B be the C⇤-subalgebra of Mm+n�r generated

by the image of ⇢. The algebra B = Mm+n�r if and only if m  n� r.

Proof. We examine the commutant of B and show that B0 contains only scalar

multiples of the identity. Let R = Q1/2 and let RXR�1 2 B0.
It is possible to choose f 2 H1

B such that f(↵i) = 1 for all 1  i  p and

f(zj) = 0 for r + 1  j  n. Given j, with r + 1  j  n, it is possible to choose

f such that f(zj) = 1, f(↵i) = f(zl) = 0 for 1  i  p and l 6= j. Therefore B
is generated by R�1EjR where E0 := E1,1 + . . . + Em,m and Ej := Em+j,m+j for

1  j  n� r.
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The matrix RXR�1 2 B0 if and only if

RXR�1R�1EjR = R�1EjRRXR�1 (5.30)

and

RXR�1(R�1EjR)⇤ = (R�1EjR)⇤RXR�1. (5.31)

This happens if and only if QXQ�1Ej = EjQXQ�1 and XEj = EjX. These

conditions tell us that X and QXQ�1 are both block diagonal with 1 block of size

m⇥m followed by n� r blocks of size 1. Let us write

X =

2

6

4

A 0

0 D

3

7

5

, QXQ�1 =

2

6

4

B 0

0 E

3

7

5

, (5.32)

where D and E are scalar diagonal of size (n� r). We have,

2

6

4

Q1 Q2

Q⇤
2 P

3

7

5

2

6

4

A 0

0 D

3

7

5

=

2

6

4

B 0

0 E

3

7

5

2

6

4

Q1 Q2

Q⇤
2 P

3

7

5

. (5.33)

This tells us that PD = EP , where P = [pi,j]
(n�r)
i,j=1 is the Pick matrix. Since

pi,jdi = pi,jej and pi,j are non-zero for 1  i, j  (n � r), we get di = ej for

1  i, j  (n � r). Hence, we may assume that D = E = In�r. Now comparing

the o↵-diagonal entry we see that Q⇤
2A = Q⇤

2, BQ2 = Q2 and so

Q⇤
2A = Q⇤

2B
⇤ = Q⇤

2. (5.34)
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Rewriting this we get

Q⇤
2(A�B⇤) = Q⇤

2(Im � A) = Q⇤
2(Im �B⇤). (5.35)

If m  n� r, then Q⇤
2 has rank m which implies Im = A = B, X = Im+n�r and

B = B00 = {Im+n�r}0 = Mm+n�r. (5.36)

On the other hand if m > n� r, then there exist m� n + r linearly independent

solutions to the equation Q⇤
2v = 0. These can be used to construct matrices

A, B 6= Im that solve equation (5.35). Hence, B 6= Mm+n�r.

Theorem 5.2.6. Let r � 1. The C⇤-envelope of H1
B /I is Mm+n�r if and only if

m  n� r.

Proof. This follows from Hamana’s theorem and the fact that Mm+n�r is simple.

As a corollary we obtain the following theorem from [15].

Corollary 5.2.7 ([15, Theorem 5.3]). Let z1 = 0 and n � 3. The C⇤-envelope of

H1
1 /I is Mn+1.

Proof. Since r = 1 and n � 3 we see that n� r = m = 2. Hence, by the previous

result C⇤
e (H1

1 /I) = Mm+n�r = Mn+1.

As a corollary we also obtain Solazzo’s result [38], which we stated as Theo-

rem 5.2.2, for the algebra H1
0, 12

.
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To close our discussion we want to make a few statements about the relevance

of the result on C⇤-envelopes in distinguishing between scalar-valued and matrix-

valued problems.

Note that the collection of one-dimensional subspaces of H2  BH2 can be

identified with the complex-projective m-sphere PSm. For a point x 2 PSm let

us denote by Vx the corresponding one-dimensional subspace of H2  BH2 and

let the kernel for Vx � BH2 be denoted Kx. For a fixed pair of points z, w 2
D, the map (z, w) 7! Kx(z, w) is continuous. Denote by Kx the span of the

kernel functions at the points z1, . . . , zn for H2
x. The interpolation theorem tells

us that there is an isometric representation of H1
B /I on C(PSm, M(n�r)+1) given

by �(f + I)(x) = PK
x

MfPK
x

. If � is a completely isometric representation, then

C = C⇤(�(H1
B /I)) is a candidate for C⇤

e (H1
B /I). However, the C⇤-algebra C is a

subalgebra of M(n�r)+1(C(X)) and as such its irreducible representations can be

at most (n � r + 1)-dimensional. The fact that m � 2 tells us that m + (n �
r) > (n� r) + 1 and this implies that C⇤

e (H1
B /I) cannot be contained completely

isometrically in M(n�r)+1(C(X)). This contradiction proves that the matrix-valued

analogue of the interpolation result in Theorem 4.1.1 is generally false.

One of the major results in [28] is the fact that C⇤
e (H1(A)/I) ⇠= Mn(C(T)) for

n � 3. This is a result of a careful examination of the representation that arises

from the Abrahamse-Ball theorem. For the space H1
� one might naively guess

that C⇤
e (H1

� /I) is isomorphic to Mn(C(�̂)). Given that the p ⇥ p matrix-valued

interpolation theorem is parameterized by the orbit space Hom(Fm,Up)/Up, one

might conjecture that C⇤
e (H1

� /I) ⇠= Mn(C⇤(�)). The results in Theorem 4.2.8

show that, even for an infinite, amenable group, the kernel on H2
� could be a
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complete Nevanlinna-Pick kernel. A consequence of this fact is that C⇤
e (H1

� /I) ⇠=
Mn in this case. Hence, both conjectures above are generally false.

For the group � that arises from the covering of the annulus, Theorem 4.2.19

shows that there is a completely isometric representation of H1
� /I on the span of

the Szegö kernel functions
n

k�(i)(z
j

) : i 2 Z, j = 1, . . . , n
o

. Therefore, Mn(C(T))

is a quotient of the C⇤-algebra generated by the image of this representation. It

might be of value to know what this C⇤-algebra is, but an explicit description of

it seems beyond us at this time.

5.3 Topics to explore

It is fair to say that the theory of constrained problems still requires a lot of

development. The study of these problems is of value. These algebras make

connections both with function theory on multiply connected domains and with

function theory in several complex variables.

The algebras H1
B provide us with an interesting class of naturally occurring fi-

nite co-dimension subalgebras of H1. In order to understand the finite-dimensional

quotients as operator algebras we must have a more complete understanding of the

matrix-valued interpolation problem. This would seem to be the next logical step.

A good way to begin this process would be to explore the structure of the C⇤-

envelope for quotients of algebras of the form H1
B1
\ H1

B2
for two finite Blaschke

products B1 and B2. At the other extreme would be a better understanding of the

C⇤-envelope of the quotient of H1
� .

The C⇤-envelope approach has the drawback that it is not refined enough to
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distinguish any structure in the 2-point problem. In fact, when n = 2, the C⇤-

envelope is always either M2 or C�C! In these cases the correct approach would

seem to be computing the Carathéodory metric for the algebra H1
B . This has

been done for H1
1 by Knese [25] and was reformulated as a two-variable complex

optimization problem in [15].

Structural results related to the maximal ideal space, corona problems and Bass

stable rank of H1
B have been obtained by Mortini, Sasane and Wick [29].
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